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ABSTRACT 

Conventional methods of slope stability provide a constant value for the safety factor of the slope, without information of 
slope displacements and possible variations of safety margins along the potential failure surface. To overcome this shortcoming, a 
force-equilibrium-based finite displacement method (FFDM) is proposed. Two well known slice methods for circular failure sur-
faces, namely, the simplified Bishop’s and Fellenius’ methods are considered in the proposed procedure. The FFDM takes into 
account all limit equilibrium requirements originally adopted in the slice method with additional displacement compatibility func-
tions and hyperbolic shear stress-displacement relationships. The FFDM provides incremental slope displacements induced by 
internal or external stress (or safety status) variations. The FFDM also provides local stress-based and displacement-based safety 
factors as parts of analytical outputs. A monitored highway slope during a rainstorm is used in a preliminary verification of 
FFDM. Results of the comparative study shows that the slope displacements computed using Fellenius’ approach tend to be over- 
conservative, regardless of different considerations on the influence of groundwater pressures, due partially to its less realistic 
assumption on the inter-slice forces. The simplified Bishop’s method provides acceptable analytical slope displacement results 
comparable with that measured for the studied slope caused by an elevated groundwater, and is recommended for further applica-
tions. 

Key words: Slope stability, slope displacement, rainfall-induced slope displacement, limit equilibrium, slice method, displace-
ment compatibility, hyperbolic soil model.

1. INTRODUCTION 
The problem of slope instability is an everlasting challenge 

to the societies of geosciences and civil engineering. Various 
methods of slope stability using limit equilibrium, finite element, 
and other methods are frequently reported (Duncan and Wright 
2005). Under the framework of limit equilibrium, Fellenius pio-
neered the slice method of slope stability in the 1920’s (Fellenius 
1936). Fellenius’ original method and the updates that followed 
constituted a major contribution to the practice and development 
of geotechnical engineering. (Bishop 1955; Mogenstern and Price 
1965; Janbu 1973; Sarma 1973; Spencer 1973). It is well-known 
that the groundwater table rise and rainfall infiltration have been 
recognized as major factors that cause slope instability (Lesh-
chinsky and Huang 1992; Huang 2013a, b). Current slice meth-
ods of slope stability can provide only limited information re-
garding the rainfall-induced slope instability, i.e., only the 
changes of safety factors caused by the rainfall infiltration or 
groundwater table rise, can be obtained as an outcome of anal-

yses. To this end, the simplified Bishop’s and Fellenius’ slice 
methods of slope stability will be used here as examples for the 
FFDM formulations. It is noted that the principle and equations 
proposed here are equally effective to other slice methods re-
gardless of their numerical accuracies and shapes of failure sur-
face. An example of applying this approach to a generalized slice 
method has been reported by Huang (2013a, b). 

Figure 1 schematically shows a potential failure mass with 
ns vertical slices, in which Wi, Ni and Si represent self-weight, the 
normal force at the base, and the shear force at the base of slice i, 
respectively. Forces acting on a typical slice i are shown in Figs. 
2(a) and 2(b) for Fellenius’ and Bishop’s methods, respectively. 
Based on the simplified Bishop’s method, a safety factor (Fs) for 
the slope can be expressed as: 
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where 
 Ci : Cohesive shear resistance at the base of slice i 

(c  ic  Bi  sec i) 

 Ui : Uplifting force acting at the base of slice i 
(ui  iui  Bi  sec i) 
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Fig. 1 A potential failure mass confined by a circular failure 
surface 

 
(a) Fellenius’ method                (b) Bishop’s method 

Fig. 2  Forces acting on a typical slice i 

 i : Slice number (i = 1, 2, …, ns) 
 Wi : Self-weight of slice i 
 i : Inclination angle of slice base i 
 c : Cohsion intercept of soil 
  : Internal friction angle of soil 
 ui : Porewater pressure acting at slice base i 
 i, Bi : The length of base and the width, respectively, 

for slice i.  
Note that in Eq. (1), a differential term of vertical inter-slice 

force, Xi ( Xi  Xi1; Xi, Xi1: Vertical inter-slice forces acting 
on the left and right sides, respectively, of slice i) is ignored (or 
Xi  0 is assumed). 

In the Fellenius’ method, the force equilibrium in the direc-
tion normal to the slice base (FN  0) does not take into account 
the influence of inter-slice forces. This method is based on the 
implicit assumption that the resultant inter-slice force acts paral-
lel to the slice base. Fs is expressed as: 
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It is well-known that values of Fs obtained from Eq. (2) are 
conservative compared with those obtained from rigorous slice 
methods, because of the less realistic assumptions regarding the 
inter-slice forces (Whitman and Bailey 1967; Leshchinsky and 

Huang 1992). It is also well known that the conservatism of the 
Fellenius’ method can be improved by using the concept of 
buoyant weight of soils (Whitman and Bailey 1967). In this case, 
the Fs can be expressed as: 
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where 

 Wi : Buoyant weight of slice i 

2. DERIVATION OF FORCE-EQUILIBRIUM- 
BASED FINITE DISPLACEMENT METHOD 

In the Bishop’s method, the effective normal force iN   can 
be expressed based on the force equilibrium in the direction of 
gravity (i.e., FV  0) and the assumption of Xi Xi1Xi  0, 
as schematically shown in Fig. 2(b) (Bishop 1955): 

( sin cos ) seci i i i i i iN W S U           (4) 

In the Fellenius’ method, effective normal force iN   is de-
rived based on the principle of the force equilibrium normal to 
the slice base (i.e., FN  0) and the assumption that the resultant 
inter-slice forces are parallel to the slice base (as schematically 
shown in Fig. 2(a)): 

cosi i i iN W U       (5) 

It is empirically known that taking into account the effect of 
up-lifting force Ui as shown in Eq. (5) may generate overly con-
servative results. To this end, Baily and Whitmann (1967) sug-
gested that iN   can be derived using the concept of buoyant 
weight: 

cosi i iN W      (6) 

In the proposed FFDM, a local stress-based safety factor FSi 
is defined according to the Mohr-Coulomb’s failure criterion. 
Note that the local FSi is different from the averaged (or con-
stant) value of Fs used in conventional limit equilibrium methods 
such as those shown in Eqs. (1) ~ (3). 
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i i iS      (9) 

where 
 fi, i : Ultimate shear strength, and shear stress, respec-

tively, for slice i. 
 Sfi, Si : Ultimate shear resistance and shear force, respec-

tively, for slice i  
 FSi : Local force-based safety factor  
As is shown in Fig. 3, the shear stress (i) vs. shear dis-

Bi 
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placement (i) relationship is represented by a hyperbolic curve 
which constitutes the mechanical foundation of the proposed 
method: 
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where 

 kinitial : Initial shear stiffness 

 K, n : Material constants 

 Rf : Failure ratio 

 
in  : Normal stress acting at the base of slice i 

 Pa : Atmospheric pressure ( 101.3 kPa) 

 G : Reference stiffness ( 101.3 kPa/m) 

Normalizing Eq. (10) using fi: 
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Fig. 3 Hyperbolic model of shear displacement vs. shear stress 
for soils 

Based on the definitions of local safety factors in Eq. (7), Eq. 
(15) can be re-written as: 
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A displacement diagram (Atkinson 1981) that satisfies dis-
placement compatibility as schematically shown in Figs. 4(a) and 
4(b) can be introduced:  
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where 

 : Dilatancy angle of soils 

The displacement of slice i can be related to the vertical dis-

placement at the top of slice 1 (o) using the following equation:  
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Equation (20) can be expressed as: 
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Substitute Eq. (21) into Eq. (18), 
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(a) Vectors of shear displacement 

 
(b) Displacement diagram 

Fig. 4  Displacement compatibility of adjacent slices 
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Based on the principle of moment equilibrium at the center 

of circle, i.e., Mo  0: 

tan
( sin )i

i i
i

C N
W

FS

  
     (24) 

Substitute Eq. (23) into Eq. (24), a close-form solution of o 
can be expressed as: 
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In Eq. (25), various values of N expressed by Eqs. (4) and 
(5) (or Eq. 6) can be used to compute 0 for simplified Bishop’s 
and Fellenius’ methods, respectively. It can be seen that Eq. (25) 
is basically a reversed expression of Eqs. (1) and (2), with known 
displacement-related parameters ‘a’, ‘b’, ‘f (i)’, and the un-
known ‘o’. It is also noted that the unknown ‘o’ appears at both 
sides of the equation, indicating that an iterative procedure is 
required in calculating values of ‘o’. This situation is similar to 
that used for deriving the safety factor using the simplified Bish-
op’s method (Bishop 1955) which also requires iterative calcula-
tions for the safety factor of the slope. A criterion of  = 1 is 
used here to detect the convergence of 0: 
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3. LOCAL DISPLACEMENT-BASED SAFETY 
FACTORS 

The displacement at failure (f) can be obtained by using 

FSi  1.0 in Eq. (18): 
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Re-arrange the above equation to obtain f: 
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A displacement-based safety factor, FDi can be defined as: 
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The hyperbolic stress-displacement relationship used in the 
present study can be easily modified for special cases, e.g., line-
arly elastic pre-peak with a post-peak (residual) strength or hy-
perbolic pre-peak with post-peak strength. These issues are be-
yond the scope of the present study.  

4. INCREMENTS OF SLOPE DISPLACEMENT 
AND COMPUTER FLOW CHART 

In calculating slope displacements induced by external and 
internal condition changes (e.g., loading, water table, and 
porewater pressure variations), two values of i (or 0), namely, 
pre-rainfall slope displacement ( )a

i  and post-rainfall slope 
displacement ( )b

i , should be calculated, and the increment of 
displacement for slice i, induced by the rainfall event is schemat-
ically shown in Fig. 5, and is defined as: 

b a
i i i       (31) 

Figure 5 shows one of the possible stress paths for a soil 
element on the potential failure surface subjected to a rainfall- 
induced groundwater table rise. In this case, the shear stress on 
the element is largely remain unchanged because the porewater- 
pressure-independent character of shear stresses (or deviatoric 
stresses), and the increase of soil self-weight of soil from a moist 
condition to a saturated one is usually small. On the other hand, 
the effective normal pressure (n) on the potential failure surface 
is reduced due to the increase of porewater pressure. Therefore, 
an incremental displacement responding to the decrease of n 
occurs, as shown in Fig. 5. A summary of unknowns and equa-
tions in the proposed FFDM is shown in Table 1 which also in-
dicates that the proposed method is in a static determinate condi-
tion. A computer program was coded in Visual Basic Express 
2010 (Microsoft 2010) for computing slope displacements in-
duced by external and/or internal factor changes. The flow chart 
is shown in Fig. 6. 

5.  CASE STUDY  

The studied slope was located in the southwest foothills of 
Taiwan. The slope was a part of highway No. 18, which winds 
through an area prone to landslides. Landslides cause property 
losses and traffic problems in this area during the rainy seasons. 
Therefore, this area has been closely monitored and studied 
(Chang et al. 2005). Figure 7 shows the studied slope with loca-
tions of inclinometer measurements, groundwater tables and 
sliding surface (Energy and Resources Research Laboratory of 
Industrial Technology Research Institute, ERRL 1999). The ob-
served slip surface is fitted by an arc with a radius of 1543m and 
a rotation center at (X, Y) = (49.7m, 1569.5m), which are also 
shown in the figure. Underground water table observations were 
conducted in a borehole adjacent to the slope during a rainstorm. 
According to inclinometer measurements, the slope displacement 
during typhoon Herb in 1995 was 30mm in the downward direc-
tion (ERRL 1999). Site exploration and inclinometer measure-
ments revealed that the sliding slope mass consists of colluviums 
and rock fragments. The slip surface at inclinometer 04-4 is 
about 90 m-deep from the ground surface and is located at highly 
weathered rock strata. Therefore, undisturbed sampling and test-
ing at this depth is difficult. Possible values of  for the matrix 
materials were estimated in the range of 25 ~ 30 and a cohesion 
intercept c = 40kPa, according to the back-analysis result report-
ed by ERRL (1999). Figure 8 shows changes in conventional 
safety factors (Fs) for the studied slope caused by the elevated 
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Fig. 5 Shear stress and displacement paths induced by a 
reduction of normal stress 

 

Fig. 6  FFDM computer flow chart (program DISP-SLICE) 

groundwater table based on Eqs. (1), (2), and (3). For both Bish-
op’s and Fellenius’ methods, reductions in Fs of about 0.05 ~ 
0.06 are obtained for an internal friction angle () between 25 
and 30, and a cohesion intercept c = 40kPa for above-water- 
table zone in the pre-rainfall case. Note that conventional lim-
it-equilibrium- based slope stability analyses cannot provide in-
formation beyond this point, and a reduction in Fs of 0.05 ~ 0.06 
provides limited information about the influence of the ground-
water table (or the effect of rainfall) on the performance of the 
slope.  

 

Fig. 7  Cross section of the studied slope 

 

Fig. 8 Conventional safety factors for pre- and post-rainfall 
conditions 

Table 1  Unknowns and equations in the proposed FFDM 

Unknown
Number of 
unknowns

Equation 
Number of 
equations

iN   ns 
FN  0; Eq. (5) 
FV  0; Eq. (4) 

ns 

Si ns Mo  0; Eq. (24) 1 

FSi ns 

Mohr-Coulomb’s failure 
criterion and definition of 
FSi 

tani i
i

i

C N
S

FS

 
 ; 

Eq. (7) 

ns 

FDi ns 
f

i
i

FD
 

  
; Eq. (30) ns 

i 

(i = 2 ~ ns)
ns-1 

Stress-displacement 
relationships (i vs. i); 
Eq. (10) 

ns 

o 1 

Displacement 
compatibility 
i = o  f (i); Eq. (21) 
i  2---ns) 

ns-1 

 5 ns  5 ns 

, 
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Although undisturbed sampling and large-scale direct shear 
tests were not performed for the studied slope, large-scale direct 
shear tests performed for various soils (Huang 2013(a), (b)) gen-
erally suggest the applicability of the hyperbolic shear stress- 
displacement relationships with model parameters, K in the 
ranges of 50 and 300; n in the range of 0.1 and 0.3; Rf in the 
range of 0.7 and 0.9. For a comparative purpose, c = 40kPa,  = 
25, K = 80, n = 0.1, and Rf = 0.8 are used in the following anal-
yses according to the results of parametric study performed by 
Huang 2013(a); 2013(b). Table 2 shows a comparison of calcu-
lated slope displacement at X  784m where inclinometer 04-4 
was installed. Calculating the slope displacements shown in Ta-
ble 2 involves the following three steps: (1) calculating the verti-
cal displacement at the crest of the potential failure surface, Δ0 
(using Eq. 25) for the pre-rainfall and the post-rainfall conditions; 
(2) calculating displacements at the targeted location of failure 
surface (X = 784 m in this study) for pre-rainfall and post-rainfall 
conditions (namely, a

i  and b
i ) using displacement compati-

bility function (Eq. 21); (3) calculating incremental slope dis-
placement at the targeted location, induced by the rising of 
groundwater table, using Eq. (31). It can be seen that simplified 
Bishop’s limit-equilibrium approach (Eq. 1) renders slope dis-
placement value (0.029m) comparable with the measured value 
of 0.032m. However, this is not the case for the Fellenius limit- 
equilibrium approach (Eqs. 2 and 3) which generates smaller 
displacements than the others, despite their different considera-
tions for the effect of porewater pressure.  

Figure 9(a) compares local stress- and displacement-based 
safety factors (FSi and FDi) for the case c  40kPa,   25, K  
80, n  0.1, and Rf  0.8. Based on the conventional constant- 
safety factor concept, values of Fs using simplified Bishop’s 
method, using c = 40kPa;  = 25 for pre-rainfall, and c = 0;    
 = 25 for post-rainfall conditions, are 1.12 and 1.06, respec-
tively, as shown in Fig. 8. The use of c = 0kPa in the analyses for 
the post-rainfall condition is based on a well-known phenomenon 
of rainfall infiltration which penetrates from the slope surface 
down toward the existing groundwater table via the so-called 
“wetting front propagation”, leading to a near-saturated (or c = 0) 
condition of the slope. Distributions of FSi and FDi for the 
pre-rainfall case reveal that a major part of the potential failure 
surface are associated with FSi  1 (or FDi  1). Only small por-
tions of the potential sliding mass (close to the toe and the crest 
of potential failure mass) were associated with FSi  1.0 (or FDi 
 1.0) conditions. In the case of post-rainfall, the slope experi-
enced substantial drops in FSi and FDi, for a major portion of the 
failure surface. It can be seen that part of the slices experience 
FSi 1.0, indicating that ultimate failure conditions have been 
reached at these locations. This observation is consistent with 
observations that tension cracks developed around the crest of 
sliding mass (Ching and Fredlund 1983; ERRL 1999), and is also 
consistent with the progressive failure mechanism proposed by 
Bjerrum (1967), in the sense that a stress re-distribution along the 
potential failure surface propagates from the slope toe due to the 
removal of the slope toe. In the present study it is shown that a 
critical condition occurs at the slope toe because of the combined 
effects of a high groundwater table and low overburden pressure. 

Table 2 Comparisons of calculated horizontal slope displace-
ment at X  784m for the studied slope (Wu-Wan-Chai 
slope) based on various slice methods (c  40kPa for 
pre-rainfall; c  0 for post-rainfall, and   25, K  80, 
n  0.1, Rf  0.8,  0 , 12.5 for pre- and post-rainfall 
conditions) 

  = 0  = 12.5 

Simplified Bishop; Eq. (1) 0.029m 0.029m 

Fellenius; Eq. (2) 0.013m 0.011m 

Fellenius; Eq. (3) 0.011m 0.010m 

 
 

 
(a)  = 0 

 
(b)  = 12.5 

Fig. 9 Local stress-based and displacement-based safety factors 
using FFDM with Bishop’s limit equilibrium approach 

It is important to note that the use of displacement-based safety 
factors, FDi, seems to be more advantageous than the use of 
stress-based FSi, in the sense that the difference in FDi between 
the pre-rainfall and post-rainfall cases is larger than that for FSi. 
This allows for a more detailed investigation of the safety status 
of the slope than that based on the FSi distribution. Figure 9(b) 
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shows the effect of  on the calculated values of FSi and FDi by 
using input conditions identical to those used in Fig. 9(a), except 
that   12.5 ( /2) is used for Fig. 9(b). Differences between 
Figs. 9(a) and 9(b) can be hardly seen, indicating that input val-
ues of  have a negligible influence on the outcomes of FSi and 
FDi. As seen in Figs. 9(a) and 9(b), the stress-based safety factors 
are with relatively small variations along the entire failure sur-
face. Large variations of the displacement-based safety factors 
are caused by the non-linear stress- displacement curve used here, 
i.e., when approaching plastic failure states, a small stress in-
crease can lead to a significant displacement response. This can 
be deemed as a major advantage of the displacement-based safety 
factors used in the proposed method. 

Figure 10(a) shows the calculated values of shear displace-
ment (i) and horizontal displacement [i  cos(i)] along 
the slip surface for the same case shown in Fig. 9(a). Shear dis-
placements at close-to-crest locations are larger than those at 
close-to-toe locations. It can be seen that horizontal shear dis-
placements along the entire slip surface are identical, suggesting 
a rigid sliding mass in this case. The case shown in Fig. 10(b) 
utilizes input parameters similar to those used for Fig. 10(a), ex-
cept that   12.5 is used in Fig. 10(b). The influence on the 
patterns of displacement along the failure surface is significant. 
By using a non-zero value of  = 12.5, the assumption of a rigid 
body becomes invalid, and the pattern of the shear displacement 
mimics that of f (i), as shown in Fig. 11. The non-uniform dis-
placement behavior shown in Fig. 10(b) reveals another ad-
vantage of the proposed method, in the sense that various dis-
placement patterns of the sliding mass can be simulated via the 
input value of , which dictates the shape of the displacement 
compatibility function f (i). 

Figure 12(a) shows typical examples of mobilized shear and 
effective normal forces along the sliding surface based on identi-
cal soil parameters for Figs. 9(a) and 10(a). Distributions of 

in  
and i generally show significant internal stress distributions, in 
the sense that normal stresses along the failure surface increase as 
the depth of the failure surface increases. This trend is consistent 
with previous studies on the internal stress along the failure sur-
face (Leshchinsky 1990; Leshchinsky and Huang 1992). Increas-
es in 

in and i induced by rainfall (or the rises in the water ta-
ble) are highlighted in Fig. 12(b). Reductions in 

in , associated 
with increases of i along a major part of the sliding surface can 
be seen. In Fig. 12(b), a normal stress reduction of about 20 kPa 
prevails along the majority of the slip surface. Increases in shear 
stress are insignificant for a large portion of the slip surface. At 
close-to- toe and close-to-crest locations where the values of FSi 
have reached the critical condition ( 1.0), the slope experienced 
certain degrees of shear stress reductions, which were caused by 
the stress re-distribution mechanism. 

Figures 13(a) and 13(b) show stresses and stress increments, 
respectively, for the same case presented in Figs. 12(a) and 12(b). 
The only difference between Figs. 12 and 13 is the input dilatan-
cy angle (). In this comparison,   0 and   /2  12.5 are 
used for Figs. 12 and 13, respectively. Comparing Figs. 12 and 
13, hardly any difference can be seen, suggesting that input value 
of  (within the investigated range) has a non-detectable influ-
ence on the normal and shear stresses distributions (and stress 
increments) along the failure surface for the investigated slope. 

 

 
(a)  = 0 

 
(b)  = 12.5 

Fig. 10 Shear displacements calculated using FFDM with 
Bishop’s limit equilibrium approach 

 

Fig. 11 Variations of f (i) induced by various values of  for 
the studied slope 
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(a) Normal and shear stresses 

 
(b) Stress increments 

Fig. 12  Stress distribution on the failure surface for  = 0 

6.  DISCUSSIONS 

Engineering judgments regarding “stability” and “instabil-
ity” of slopes based on conventional limit equilibrium methods 
are impractical, in the sense that a stable slope from conventional 
point of view may be associated a certain displacement; an un-
stable slope from conventional point of view may be associated 
with a limited (or remediable) slope displacement. Rather than 
providing conventional thresholds of slope stability (namely, Fs  
1.0), the proposed method provides new thresholds of slope sta-
bility from both stress and displacement viewpoints. The present 
study constitutes the first step of using new local stress- and dis-
placement-based slope stability criteria. Also noted that the pre-
sent method is an extension of limit-equilibrium-based slice 
method, which inherits some characters of conventional slice 
methods, e.g., the use of a potential failure surface as a priori. 
One may question the legitimacy of using a pre-  existing failure 
surface, instead of a progressively generated failure surface as 
commonly seen in the analytical outcome of Finite element 
method (FEM). It is noted, however, a progressively generated 
failure surface (as seen in FEM) can be deemed as a part of a 
potential failure surface for which the displacement compatibility 

 
(a) Normal and shear stresses 

 
(b) Stress increments 

Fig. 13  Stress distribution on the failure surface for  = 12.5 

within the sliding mass is satisfied (as in the proposed method). 
This method is not intended to replace widely available FEM 
methods, and is intended to provide alternative tools to solve 
slope engineering problems with varieties of geological uncer-
tainty and unknowns. Because the present method employs a 
stress vs. displacement constitutive soil model which differs from 
the stress vs. strain model used in the FEM, a direct comparison 
between these two methods is difficult and is beyond the scope of 
this study. Also note that the soil parameters (c  0 for 
post-rainfall; c 40kPa for pre-rainfall, and   25,   0, K  
80, n  0.1, Rf  0.8 for pre- and post-rainfall cases) used for de-
riving Figs. 9 ~ 12 were back-calculated from the studied slope 
based on a known potential sliding surface. These parameters are 
slightly different from those reported by Huang (2013) for the 
same slope (c  0 for post-rainfall; c 40kPa for pre-rainfall,   
26,   0, K  90, n  0.2, Rf 0.8) based on rigorous Janbu’s 
method (Janbu 1973) and a non-circular failure surface. Due to 
the differences in the context of force-equilibrium and shape of 
sliding surface, results of back-analyses were slightly different, 
yet both sets of soil parameters generate similar values of slope 
displacement of about 0.03 m at the location of X = 784m. 
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7.  CONCLUSIONS 

A novel improvement on conventional limit-equilibrium- 
based slope stability analysis was achieved here, providing sig-
nificant information regarding the displacement of the slope sub-
jected to internal and/or external environmental changes. The 
proposed force-equilibrium-based finite displacement methods 
(FFDM) were formulated based on force and moment equilibri-
um adopted in the simplified Bishop’s and Fellenius’ methods, 
incorporating as displacement compatibility requirement and a 
hyperbolic shear stress-displacement soil model. A static deter-
minate condition was attained by introducing displacement com-
patibility functions and hyperbolic shear stress-displacement 
relationships for the slope materials. As a result, local displace-
ment-based and stress-based safety factors along the potential 
failure surface are parts of the analytical solution. Based on the 
case study of a well-monitored slope during a rainstorm, the ef-
fect of a rise in the groundwater table during the rainstorm, ex-
pressed as an incremental slope displacement, was computed 
using the proposed FFDM. It was shown that the slope displace-
ment measured during the rainstorm can be closely simulated 
using stress vs. displacement relationships relevant to the data 
obtained from large-scale direct shear tests (Huang 2013a, b), 
revealing the potential of the present method for further applica-
tions. Results of a comparative study also reveals that using 
Fellenius’ method of limit equilibrium tends to render conserva-
tive values of slope displacements, due partially to its less realis-
tic assumptions on the inter-slice forces. The slope displacement 
calculated using simplified Bishop’s approach of limit equilib-
rium is comparable with that measured for the studied slope sub-
jected to a groundwater table rise. Consequently, the Bishop’s 
method of limit equilibrium is suggested for further applications 
of FFDM in the future. 
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