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ABSTRACT 

In this paper, the authors present the concept of robust geotechnical design, a new design methodology used to make the re-
sponse of a geotechnical system insensitive to, or robust against, the variation of uncertain geotechnical parameters (called noise 
factors herein). By carefully adjusting the design parameters (those that can be controlled by the designer), this methodology is 
realized through a multi-objective optimization, in which all the design requirements such as safety, robustness, and cost are ex-
plicitly considered. The results of such optimization are often expressed as a Pareto Front, a collection of optimal designs that 
collectively define a trade-off relationship between cost and robustness, whereas the safety requirement is met. The Pareto Front 
enables the engineer to make an informed design decision according to a target cost or robustness. The significance and versatility 
of new design methodology are illustrated with several geotechnical applications including design of shallow foundations, drilled 
shafts and braced excavations. 
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1. INTRODUCTION 

This paper presents the new robust geotechnical design 
(RGD) concept, a design methodology designed to achieve a 
certain level of design robustness, in addition to meeting the 
safety and cost requirements. The robust design, originated from 
the field of Industry Engineering (Taguchi 1986; Chen et al. 
1996), has recently been applied to many design fields such as 
mechanical, structural and aeronautical design (e.g., Doltsinis et 
al. 2005; Zhang et al. 2005; Park et al. 2006; Brik et al. 2007; 
Lagaros and Fragiadakis 2007; Kumar et al. 2008; Marano et al. 
2008; Lee et al. 2010; Paiva 2010). This robust design concept is 
adapted herein to formulate a novel RGD methodology. Here, a 
design is considered “robust” if the variation in the system re-
sponse is insensitive to the variation of noise factors (mainly 
uncertain geotechnical properties) and correlations between these 
noise factors. 

In routine geotechnical practice, engineers are often limited 
in their ability to ascertain geotechnical parameters because of 
the complexity of soil deposits and the limited availability of soil 
data (due to the budget constraint). Furthermore, the uncertainty 
of geotechnical parameters can come from many sources, such as 
spatial variability, measurement errors, and transformation errors 
(Phoon and Kuhalwy 1999). To compensate for these uncertain-
ties, the engineer usually chooses to adopt a conservative design 
that can be very cost inefficient. Today, the reliability-based de-

sign (RBD) approach is often a method of choice to deal with 
parameter uncertainties in the design (e.g., Harr 1987; Christian 
et al. 1994; Wu et al. 1989; Duncan 2000; Baecher and Christian 
2003; Phoon et al. 2003; Chalermyanont and Benson 2004; Fen-
ton and Griffiths 2008; Hsiao et al. 2008; Najjar and Gilbert 
2009; Griffiths and Fenton 2009; Ching and Phoon 2011; Juang 
et al. 2011; Wang et al. 2011; Zhang et al. 2011). However, be-
cause the uncertainties of geotechnical parameters are often dif-
ficult to characterize statistically, the RBD is often conducted 
with the assumed statistics of these uncertain parameters. As 
shown in Juang et al. (2013a), the results of RBD can be greatly 
affected by the assumed statistics (such as the coefficient of vari-
ation) of the geotechnical parameters. Thus, the dilemma of over- 
design for safety or under-design for cost efficiency has not been 
fully overcome even the design approach has evolved from the 
factor of safety (FS)-based methods to the RBD methods.    

The RGD approach advocated in this paper is an attempt to 
ease the dilemma of the current design methods (either FS-based or 
RBD methods). This new design approach attempts to minimize 
the effects of uncertainties in the estimated statistics of geotech-
nical parameters by carefully adjusting the design parameters of 
the geotechnical system so that the predicted response of the sys-
tem is insensitive to these uncertainties. The RGD approach is 
realized through multi-objective optimization that explicitly con-
siders safety, cost, and robustness. Through this multi-objective 
optimization, a Pareto Front is established, which consists of a set 
of optimal designs and collectively defines some trade-off rela-
tionship. For example, when the safety requirement is met, the 
Pareto Front defines a trade-off between cost and design robustness. 
Thus, the Pareto Front can render the most optimal design if the 
desired cost range or the target robustness level is specified.  

In this paper, the RGD approach is demonstrated with three 
design examples, including shallow foundations, drilled shafts, 
and braced excavations. The significance and versatility of the 
RGD approach is presented.  
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2. ROBUST DESIGN CONCEPT 

As noted previously, the robust design concept originated in 
the field of industry engineering, which we adapted in our study 
of geotechnical problems. A brief introduction of the robust de-
sign concept with a geotechnical perspective is presented below 
based on the prior work by the authors (Juang et al. 2013a).  

In a traditional geotechnical design process, multiple candi-
date designs are first checked against safety requirements, and 
the acceptable designs are then optimized for cost, which yields 
the final design. In this design process, the safety requirements 
are analyzed by either deterministic methods or probabilistic 
methods. The deterministic methods use factor of safety (FS) as a 
measure of safety, while probabilistic methods use reliability 
index or probability of failure as the measure of safety. With the 
FS-based approach, the uncertainties in soil parameters and the 
associated analysis model are not considered explicitly in the 
analysis but their effect is considered in the design by adopting a 
threshold FS value. With the probabilistic approach (or reliabil-
ity-based design), these uncertainties are included explicitly in 
the analysis and the safety requirement is considered met if the 
reliability index or failure probability satisfies a threshold value. 
Finally, the cost optimization among the acceptable designs is 
performed to yield the final design.  

Regardless of whether the FS-based approach or the reliabil-
ity-based approach is employed, the traditional design focuses 
mainly on safety and cost; design “robustness” is not explicitly 
considered. Robust design aims to make the product of a design 
insensitive to (or robust against) “hard-to-control” input parame-
ters (called “noise factors”) by adjusting “easy-to-control” input 
parameters (called “design parameters”). The essence of this 
design approach is to consider robustness explicitly in the design 
process along with safety and cost requirements.  

There are two main drawbacks to traditional design ap-
proaches that fail to consider the robustness against noise factors 
(such as soil parameters variability and/or construction noise). 
First, the lowest-cost design may no longer satisfy the safety 
requirements if the actual variations of the noise factors are un-
derestimated. Thus, the safety requirements can easily be violated 
because of the high variation of the system response due to the 
unexpectedly higher variation of noise factors. Second, the po-
tentially high variability of the system response may force the 
designer to select an overly conservative design that guarantees 
safety, thus resulting in an inefficient and costly design. This 
dilemma between the over-design for safety and the under-design 
for cost-savings is, of course, an old problem in geotechnical 
engineering. However, by reducing the variation of the system 
response to ensure the design robustness against noise factors, the 
RGD approach can ease these decision-making dilemmas. Of 
course, the variation of the system response can also be reduced 
by reducing the variation in soil parameters. However, in many 
geotechnical projects the ability to reduce soil variability is re-
stricted by the nature of the soil deposit (i.e., possibility of in-
herent soil variability) and/or of the amount of soil test data that 
can be obtained. This proposed RGD methodology seeks a re-
duction in the variation of system response by adjusting only the 
design parameters (such as dimension and geometry), and not the 
noise factors (assuming that a reasonable site investigation has 
been performed).  

It should be noted that using the concept of robust design to 
adjust the design parameters is just one option for meeting the 

design requirements. It may also be possible to meet design re-
quirements by improving the soil parameter characterization. A 
balanced approach entails adopting a suitable site characteriza-
tion and testing program, followed by a robust design with the 
estimated parameter uncertainty.  

It must be emphasized that RGD is not a design methodolo-
gy to replace the traditional FS-based and reliability-based ap-
proaches; rather, it is a strategy used to complement these tradi-
tional methods. With the RGD approach, the focus involves sat-
isfying three design objectives: safety, cost, and robustness 
(against the variation in system response caused by noise factors). 
The RGD approach is implemented in this paper as an optimiza-
tion problem. As with many multi-objective optimization prob-
lems, it is possible that no single best solution exists that satisfies 
all three objectives. In such situations, a detailed study of the 
trade-offs among these design objectives may lead to a more 
informed design decision. 

In this paper, robustness is first considered within the frame-
work of a reliability-based design. Specifically, a reliability-based 
RGD procedure is proposed herein and illustrated with design ex-
amples of shallow foundations and drilled shafts. A slight variation 
of the RGD procedure is then presented for the design of braced 
excavation using allowable wall deflection and factors of safety, in 
lieu of reliability indexes, as a constraint. In the sections that fol-
low, a brief introduction of robust geotechnical design (RGD) 
methodology is presented, followed by the illustrative examples 
demonstrating the significance of the design robustness and the 
effectiveness of this methodology for selection of the “best” design 
based upon multiple objectives.  

3. ROBUST DESIGN METHODOLOGY 

An outline for robust geotechnical design (RGD) approach 
is presented below. In reference to Fig. 1, the RGD approach is 
summarized in the following steps (Juang et al. 2012; Juang et al. 
2013a & b; Wang et al. 2013):  

Step 1: Define the problem of concern and classify all input 
parameters of the intended geotechnical system into the 
design parameters and the noise factors. For the given 
problem, the deterministic model (limit state or perfor-
mance function) of the intended geotechnical system is 
then established.  

Step 2: Determine the statistics of the uncertain geotechnical 
parameters and characterize the uncertainty in the statis-
tics of these noise factors and identify the design domain. 
For the design of geotechnical systems, the key uncer-
tain soil parameters are usually identified as noise fac-
tors. The uncertainty in the statistics (e.g., coefficient of 
variation) of each of the noise factors may be estimated 
based on published literatures guided by engineering 
judgment or the bootstrapping method based on limited 
data. For the design parameters, the design domain 
should be defined based upon their typical ranges, aug-
mented with local experiences. These design parameters 
should be specified in discrete numbers for convenience 
in construction. Thus, the design domain will consist of 
a finite number (M) of designs. 
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Fig. 1 Flowchart for Robust Geotechnical Design (modified 
after Juang et al. 2013a) 

Step 3: Evaluate the variation of the system response as a meas-
ure of robustness of a given design. In this paper, the 
critical failure probability based on either ultimate limit 
state (ULS) or serviceability limit state (SLS), or the 
critical deformation that controls the design, is used as a 
measure of system response. Recall that a design is con-
sidered robust if the variation of its system response 
(e.g., failure probability or deformation) caused by the 
uncertainty in variation of noise factors is small. The 
variation of the system response is mainly caused by the 
variation of the derived statistics of the noise factors. 
Thus, in this step the mean and standard deviation (as a 
measure of robustness) of the system response will be 
evaluated. In this paper, the point estimate method 
(PEM) as updated by Zhao and Ono (2000) is adopted 
for such evaluations. 

In the flowchart shown in Fig. 1, the failure probability of 
the system is treated as the system response. A slight modifica-
tion is needed when critical deformation is adopted as the system 
response. In either case, PEM can be adopted for evaluation of 
the variation in the system response.  

The PEM approach requires evaluation of the system re-
sponse (e.g., failure probability) at each of a set of N “estimating” 
points of the input noise factors, as reflected by the inner loop 
shown in Fig. 1 (Juang et al. 2013a). In each repetition, the sta-
tistics of each of the noise factors at each PEM estimating point 
must be assigned, so that the system response (using failure 

probability as an example) can be computed using the first order 
reliability method (FORM; Ang and Tang 1984). The resulting N 
failure probabilities are then used to compute the mean and 
standard deviation of the failure probability (the system re-
sponse). 

Step 4: Conduct the repetitive analysis in Step 3 for each possi-
ble design in the design domain. For each design, the 
mean and standard deviation of the failure probability 
(the system response) are determined. This step is rep-
resented by the outer loop shown in Fig. 1. 

Step 5: Perform a multi-objective optimization to establish a 
Pareto Front, which serves as a guide for choosing the 
most preferred design.  

Note that the geotechnical design is indeed a design problem 
with multiple criteria, including safety, cost and robustness. In 
the actual implementation, the mean failure probability obtained 
from PEM integrated with FORM is set as the safety constraint to 
screen the unsatisfactory designs, and cost (in terms of construc-
tion cost for the geotechnical system) and robustness (in terms of 
standard deviation of the failure probability) are set as two objec-
tives for multi-objective optimization. 

The Pareto Front concept is briefly introduced in Fig. 2. 
When multiple conflicting objectives are enforced, it is likely that 
no single best design exists that is superior to all other designs in 
all objectives. However, a set of designs may exist that are supe-
rior to all other designs in all objectives; within the set, however, 
none is superior or inferior to others in all objectives (Juang et al. 
2012). This set of optimal designs constitutes a Pareto Front 
(Ghosh and Dehuri 2004).  

In this paper, the Pareto Front is established through the 
Non-dominated Sorting Genetic Algorithm version II (NSGA-II), 
developed by Deb et al. (2002). The obtained Pareto Front can be 
used for selecting the most preferred design if the desired 
cost/robustness level is specified. 

4. RGD APPLICATION: EXAMPLE NO. I – 
DESIGN OF DRILLED SHAFT 

The example presented in this section is a summary of the 
prior work by the authors (Juang et al. 2013a), and the reader is 
referred to that work for additional details.  

4.1  Illustrative Example 

A design example of the drilled shaft in loose sand, subject-
ed to an axial load under drained conditions (Juang et al. 2013a), 
as shown in Fig. 3, is first used to demonstrate the application of 
the proposed RGD approach. For the loose sand in this example, 
the total unit weight is 20 kN/m3, the mean value of the effective 
friction angle  is 32 and the mean value of the coefficient of 
earth pressure at rest K0 is 1. The unit weight of concrete is    
24 kN/m3 and the nominal operative in situ horizontal stress co-
efficient ratio is 1.0. The water table is set at the ground surface. 
The design parameters for the shaft are the diameter B and depth 
(length) D, respectively.  

The drilled shaft is designed to satisfy the requirements of 
both ultimate limit state (ULS) and serviceability limit state 
(SLS). For either ULS or SLS requirement, the drilled shaft is 
considered failed if the compression load exceeds the shaft com-
pression capacities. In this study, the axial compression load F is 
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Fig. 3 Schematic illustration of drilled shaft design example 
(modified after Phoon et al. 1995) 

set as the 50-year return period load F50 (F50  800 kN in this 
example) with an allowable settlement of 25 mm. Here, the ULS 
compression load capacity (denoted as QULS) is determined using 
the procedure developed by Kulhawy (1991), and the SLS com-
pression capacity (denoted as QSLS) is determined using the 
method of normalized load-displacement curve for drilled shaft 
developed by Phoon et al. (1995).  

4.2  Uncertainty Modeling 

The two uncertain soil parameters in the design of a drilled 
shaft in loose sands, as pointed out by Phoon et al. (1995), are the 
drained friction angle  and the coefficient of earth pressure at 
rest K0. As noted previously, these two uncertain parameters are 
treated as noise factors within the RGD framework.  

In geotechnical practice, soil parameters are often deter-
mined from a small set of test data; thus, the statistical character-
ization based on a small sample may be subjected to error. In 
general, the “population” mean can be adequately estimated from 
the “sample” mean even with a small sample (Wu et al. 1989). 
However, the estimation of variation of the population based on a 
small sample is often not as accurate. The variation (in terms of 
the coefficient of variation, COV) is usually estimated based on 

the typical ranges reported. In this paper, the published COVs are 
adopted to illustrate the robustness concept in a geotechnical 
design. The COV of  of loose sand, denoted as COV [] , typ-
ically ranges from 0.05 to 0.10 (Amundaray 1994), and the COV 
of K0, denoted as COV [K0], typically ranges from 0.20 to 0.90 
(Phoon et al. 1995). Based on these typical ranges, the mean of 
COV [] is assumed as 0.07, and the coefficient of variation of 
COV [] is assumed as 18. Similarly, the mean of COV [K0] is 
assumed as 0.5 and its coefficient of variation of COV [K0] is 
assumed as 30. Furthermore,  and K0 of loose sand are 
known negatively correlated. Based on the typical ranges for the 
correlation coefficient between  and K0 (denoted as , K0). The 
mean of , K0 is assumed as 0.75 and its coefficient of variation 
of COV [K0] is assumed as 10. Though these assumed values 
are used to illustrate the design example here, in the real world, 
these values are estimated by the engineer. Nevertheless, the 
required level of precision of such estimates is not high, and a 
range estimate based on reported ranges in the literature, aug-
mented with local experience will suffice. Thus, it should not be 
an extra burden to the engineer who is knowledgeable in the tra-
ditional RBD approach.  

4.3  RGD of Drilled Shaft 

As noted previously, the diameter B and depth D of drilled 
shaft represent the design parameters, the design domain of 
which should be specified. The choice of diameter B is usually 
limited to equipment and local practice, and for illustration pur-
poses in this paper, only three discrete values (B  0.9 m, 1.2 m, 
and 1.5 m) are considered here. The depth D typically ranges 
from 2 m to 8 m with an increment of 0.2 m (Wang et al. 2011). 
Thus, design parameters B and D can be conveniently modeled in 
the discrete domain with finite number of designs (say, M de-
signs, M  93 in this example).  

For the safety requirements, the target failure probability for 
SLS is set as 0.0047(corresponding to a reliability index of 2.6) 
and the target failure probability for ULS is set as 0.00069 (cor-
responding to a reliability index of 3.2). A sensitivity study indi-
cates that the SLS requirement controls the design of drilled shaft 
under axial compression load, which is consistent with those 
reported by other investigators (e.g., Wang et al. 2011). Indeed, 
in all analyses performed in this study, the SLS requirement al-
ways controls the design of drilled shafts in sand for axial com-
pression. Thus, in the subsequent analysis only the SLS failure 
probability is considered. 

Following the RGD procedure described previously, PEM 
integrated with FORM procedure is used to compute the mean 
and standard deviation of the SLS failure probability for each 
design in the design domain. The cost of each design is computed 
using the cost estimate method proposed by Wang et al. (2011). 
The non-dominant sorting technique is then used to select the 
non-dominated optimal designs, which are points on the Pareto 
Front optimal to both cost and robustness. For the geotechnical 
design of drilled shafts in sand, the goal of the multi-objective 
optimization is to maximize the design robustness (or minimizing 
the standard deviation of the SLS failure probability) and to 
minimize the cost for constructing the drilled shaft, while ensur-
ing that the safety constraint is satisfied (in this paper, the mean 
of the SLS failure probability is less than the target failure proba-
bility), as shown in Fig. 4.  

Dominated designs 

Pareto front 
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Fig. 4 Formulation of multi-objective optimization for design 
of drilled shaft 

Through multi-objective optimization, a converged Pareto 
Front is obtained, which consists of 27 designs that satisfy the 
safety constraint and are optimal to both objectives of cost and 
robustness. This Pareto Front is shown in Fig. 5. A trade-off rela-
tionship between two objectives is implied. Though the least cost 
design on the Pareto Front can be identified with B  0.9 m and 
D  6.0 m, it is the least robust. The trade-off relationship as 
shown in Fig. 5 enables an informed decision to be made when a 
desired cost level or a robustness level is specified. When the 
desired cost level is specified (using Fig. 5 as a guide), the design 
with the highest robustness is the best design; and when the de-
sired robustness level is specified (using Fig. 5 as a guide), the 
design with the least cost at the desired robustness level is the 
best design. 

Although the Pareto Front provides a trade-off relationship 
that aids in informed decision-making, it may be desirable to use 
a more user-friendly index to measure robustness. The feasibility 
robustness is defined as the confidence probability that the actual 
failure probability satisfies the target failure probability in the 
face of uncertainty, which is expressed as follows (Juang et al. 
2013a):  

  0– 0( ) ( ) ( )– 0f T TPr p p Pr P          (1) 

where pf is the computed failure probability, which is a random 
variable affected by uncertainty in the estimated statistics of 
noise factors; pT is the target failure probability; Pr [(pf  pT)  0] 
is the confidence probability that the target failure probability 
requirement is satisfied; and P0 is an acceptable level of the con-
fidence probability selected by the designer. Pr[(pf pT)  0] is 
equivalent to Pr [(T )  0], which can be computed using the 
first-order second-moment method. Thus, the feasibility robust-
ness index  can be used as a measure for feasibility robustness, 
which corresponds to different confidence probability P0 that the 
failure probability requirement is satisfied under the uncertainty 
in statistics of noise factors. 

The  value for each design on the Pareto Front is then 
computed and the relationship between  and corresponding 
cost is shown in Fig. 6. With Fig. 6, by selecting a desired feasi-
bility robustness level (in terms of ), the least-cost design 
among those on the Pareto Front can readily be determined as 
shown in Table 1. For example, when the feasibility robustness 
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Table 1 Final designs at selected feasibility robustness levels 
for drilled shaft (data from Juang et al. 2013a) 

 P0 B (m) D (m) 

1 84.13 0.9 6.2 

2 97.72 0.9 6.8 

3 99.87 0.9 7.6 

 

 

level is set at   1, which corresponds a confidence probability 
of 84.13, then the least cost design on the Pareto Front satisfies 
the feasibility robustness requirement can be easily identified 
with B  0.9 m and D  6.2 m and a cost of 1,602 USD. Thus, the 
feasibility robustness offers an ease-to-use measure for making a 
more informed decision. 

5. RGD APPLICATION: EXAMPLE NO. II – 
DESIGN OF SHALLOW FOUNDATION 

The example presented in this section is a summary of the 
prior work by the authors (Juang et al. 2012), and the reader is 
referred to that work for additional details.  
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5.1  Illustrative Example 

A design example of the shallow foundation is used to fur-
ther demonstrate the proposed RGD approach, as shown in Fig. 7. 
A square foundation (B  L) is used to support vertical compres-
sive loads with a permanent load component of G  2000 kN and 
a transient load component of Q 1000 kN. G and Q are as-
sumed to follow lognormal distribution with a COV of G of 10 
and a COV of Q of 18 (Zhang et al. 2011). The soil profile at 
the site is assumed to follow the example presented by Orr and 
Farrel (1999), which consists of homogeneous dry sand with a 
deterministic unit weight of 18.5 kN/m3. Ten effective friction 
angles  (for dry sand, c'  0) are obtained from triaxial tests 
conducted on samples of this homogeneous sand, which are listed 
in Juang et al. (2012). The groundwater table is assumed as very 
deep such that it has negligible effects on the foundation design. 
The maximum allowable settlement is set at 25 mm.  

The ULS capacity of shallow foundation is determined using 
Vesić model (Vesić 1975) updated by Kulhawy et al. (1983). The 
SLS capacity of shallow foundation is determined using normal-
ized load-settlement method developed by Akbas and Kulhawy 
(2009a; 2009b). The foundation failure is said to occur if the 
ULS or SLS bearing capacity is less than the applied load (com-
bination of permanent load G and transient load Q). 

5.2  Uncertainty Modeling 

For the design of a shallow foundation in cohesionless soils, 
soil parameter , the ULS model bias factor BF, and the two 
curve fitting parameters a and b of the SLS model are identified 
as noise factors. The uncertainty in the statistics of each of these 
noise factors is estimated with a bootstrapping method (Luo et al. 
2012). With the ten effective friction angles , the variation in 
the mean and standard deviation of  can be estimated using 
bootstrapping method. The results show that the variation of 
sample mean is quite negligible (COV of sample mean is 1.7), 
while the variation of sample standard deviation is large (COV of 
sample standard deviation is 17.9). Similarly, the bootstrapping 
method is also used to estimate the variation in sample statistics 
of other noise factors (e.g., BF, a and b). 

5.3  RGD of Shallow Foundation 

In the geotechnical design of a square shallow foundation, 
the design parameters are the foundation width B and the em-
bedment depth D. The footing width B typically ranges from a 
minimum value of 1 m to a maximum value of 5 m (Akbas and 
Kulhawy 2011). The foundation embedment depth D typically 
ranges from 1 m to 2 m (Wang and Kulhawy 2008). For conven-
ience of construction, the foundation dimensions are rounded to 
the nearest 0.1 m (Wang 2011). Thus, there are a finite number of 
designs in the design domain; in this paper, the number of de-
signs is M  450. 

For the safety requirements, the reliability requirements de-
fined in Eurocode 7 are adopted for this foundation design. The 
target failure probability for ULS is set as 0.000072 (corre-
sponding to a reliability index of 3.8) and the target failure prob-
ability for SLS is set as 0.067 (corresponding to a reliability in-
dex of 1.5). A sensitivity study indicates that the ULS require-
ment controls the design of shallow foundation under vertical 
compression load, which is consistent with those reported by 

 

B = L

D

G + Q

 

Fig. 7 Schematic illustration of shallow foundation design 
example (modified after Juang et al. 2012) 

other investigators (e.g., Wang 2011). Indeed, in all analyses 
performed in this study, the ULS requirement always controls the 
design of shallow foundation for vertical compression. Thus, 
only the ULS failure probability is considered in the subsequent 
analysis.  

Following the flowchart of the RGD methodology presented 
in Fig. 1, the mean and standard deviation of the ULS failure 
probability can be obtained for all designs in the design domain 
using PEM integrated with FORM procedure. The cost for each 
design in the design domain can be calculated using the cost es-
timation procedure proposed by Wang and Kulhawy (2008). 
Then the multi-objective optimization using NSGA-II may be 
achieved by treating the target failure probability as a constraint 
and the robustness and cost as objectives, as shown in Fig. 8.  

The design parameters (B and D in this case) are generated 
in the discrete space and all possible designs identified. Optimi-
zation is performed using NSGA-II. For this shallow foundation 
design, 62 “unique” designs are selected into the converged Pa-
reto Front, as shown in Fig. 9. Note the obvious trade-off rela-
tionship between cost and robustness. The obtained Pareto Front 
can be used as a design aid for the decision maker to select the 
“best” design based on the desired target cost or robustness level, 
as every design on the Pareto Front meets the safety require-
ments. 

Using the drilled shaft robust design procedure discussed in 
the previous section, the feasibility robustness index  for each 
of 62 designs on the Pareto Front of Fig. 9 can be computed, the 
results of which are shown in Fig. 10. As expected, a design with 
higher feasibility robustness (higher ) requires a higher cost. 
By selecting a target feasibility robustness level, the least-cost 
design among all on the Pareto Front can readily be identified as 
shown in Table 2. For example, when the feasibility robustness 
level is set at   1, which corresponds to a confidence probabil-
ity of 84.13, the least-cost design is B  2.1 m and D  1.9 m, 
which costs 1,200 USD. The feasibility robustness Pareto Front 
offers an easy-to-use measure for making an informed decision 
considering cost and robustness after satisfying the safety re-
quirements. 
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Find    d = [B, D] 

Subject to:  B  {1.0m, 1.1m, 1.2m, … , 5.0m}  

  D  {1.0m, 1.1m, 1.2m, … , 2.0m} 

0.000072ULS ULS
p Tp      

Objectives:  Minimizing the std. dev. of ULS failure probability 

Minimizing the cost for shallow foundation  

  

Fig. 8 Formulation of multi-objective optimization for design 
of shallow foundation 
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Fig. 9  Pareto Front for design of shallow foundation 
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Fig. 10 Cost versus feasibility robustness for design of shallow 
foundation 

Table 2 Final designs at selected feasibility robustness levels for 
shallow foundation (data from Juang et al. 2012) 

 P0 B (m) D (m) 

1 84.13 2.1 1.9 

2 97.72 2.3 2.0 

3 99.87 2.6 2.0 

 

6. RGD APPLICATION: EXAMPLE NO. III – 
BRACED EXCAVATION DESIGN 

The example presented in this section is a summary of the 
prior work by the authors (Juang et al. 2013b). The reader is re-
ferred to that research for additional details. 

6.1  Illustrative Example 

This final example concerns the design of braced excavation 
in clays. The soil profile at the excavation site consists of a ho-
mogenous clay layer with the ground water table located at 2 m 
below the ground surface. The clay is assigned a deterministic 
unit weight of 1.9 ton/m3. The excavation site is rectangular in 
shape with a length of 40 m and a width of 25 m. The final exca-
vation depth is 10 m and the diaphragm wall with multiple struts 
was employed as the retaining structure for the excavation. Fig-
ure 11 shows a schematic illustration of the braced excavation 
example with the vertical spacing of the struts S  2 m. 

The design of braced excavation in clays must satisfy the 
stability and deformation requirements. The stability require-
ments are enforced to prevent wall and ground failures (including 
push-in and basal heave failure for stability of excavation in 
clays). Factors of safety against these failures specified in the 
design code are enforced in the design. On the other hand, the 
deformation requirements are usually enforced to prevent dam-
age to adjacent structures. In practice, the maximum wall deflec-
tion during the excavation is most often used as a measure for 
field control. Indeed, stability and deformation problems can 
generally be prevented when the maximum wall deflection is 
kept below a threshold value. Thus, the maximum wall deflection 
is herein considered as the response of concern for a braced ex-
cavation system, and a design is deemed robust if the variation of 
the maximum wall deflection caused by the uncertain noise fac-
tors (including soil parameters and construction noise) are small. 
In this study, a computer code TORSA (Taiwan Originated Re-
taining Structure Analysis) created by Trinity Foundation Engi-
neering Consultants Co. (TFEC), which is a popular design tool 
based upon the beam-on-elastic foundation theory, was adopted 
as the deterministic model for prediction of the maximum wall 
deflection. 

6.2  Uncertainty Modeling 

For the design of braced excavation in clays, the uncertain 
soil parameters and construction noise are considered as noise 
factors. As an example, let us consider a braced excavation in a 
typical clay site in Taipei, where the normalized undrained shear 
strength (su / 'v) typically has a mean of 0.32 and a COV of 0.2, 
and the normalized modulus of horizontal subgrade reaction   
(kh / 'v) typically has a mean of 48 and a COV of 0.5. These two 
soil parameters are generally correlated, and the correlation coef-
ficient is estimated at approximately 0.7. The construction noise 
mainly refers to the surcharge behind the wall qs, which is as-
sumed to have a mean of 1 ton/m and a COV of 0.2. 

6.3  RGD of Braced Excavation 

For a braced excavation in clay using a diaphragm wall, the 
length of the wall (L), the thickness of the wall (t), the vertical 
spacing of the struts (S), and the strut stiffness (EA) are the de-
sign parameters. In the context of robust design, the goal is to 
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Fig. 11 Schematic illustration of braced excavation design 
example (modified after Juang et al. 2013b) 

derive a satisfactory design by selecting a proper set of design 
parameters (L, t, S, EA) so that the system response, in the form 
of the maximum wall deflection, is insensitive to, or robust 
against the variation in noise factors (su / 'v, kh / 'v, qs). Of 
course, all the safety requirements have to be satisfied, and the 
construction cost has to be justified.  

In this particular example of braced excavation in a uniform 
clay layer, the length of the wall L typically ranges from 20 m to 
30 m with an increment of 0.5 m, and the thickness of wall t 
ranges from 0.5 m to 1.3 m with an increment of 0.1 m. The strut 
stiffness EA typically assumes a stiffness value from one of the 
five strut layout options: H300, H350, H400, 2@H350 and 
2@H400 (note: 2@H400 means two H400 struts at the same 
level). The vertical spacing of the struts S typically assumes a 
value from one of the four choices: 1.5 m, 2 m, 3 m and 6 m. 
Based on the combination of the four design parameters (L, t, S, 
EA), there are totally 3780 possible discrete designs in the design 
space. 

For each design in the design domain, PEM is used to eval-
uate the mean and standard deviation of the maximum wall de-
flection caused by variation in noise factors, and the cost of the 
supporting system is estimated using the procedure documented 
in Juang et al. (2013b). In this study, a multi-objective optimiza-
tion is performed considering robustness (based on the variation 
in the predicted maximum wall deflection) and cost as the objec-
tives and the safety requirements (including both stability and 
serviceability) as the constraints. The configuration for this mul-
ti-objective optimization is shown in Fig. 12. After the optimiza-
tion, 25 “unique” designs are selected into the final Pareto Front, 
as shown in Fig. 13.  

The Pareto Front in Fig. 13 describes a trade-off relationship 
between robustness and cost for decision making in braced exca-
vation design. The designer can select the most preferred design 
based on the specified target cost/robustness level. For example, 
if the threshold budget for a supporting system is 1  106 USD, 
the design with least standard deviation of the wall deflection 
within the cost level on Pareto Front will be the most preferred 
design. This design has the following parameters: t  0.8 m,    
L  20 m, S  1.5 m and EA  stiffness of H400 strut.  

 

Given: LE = 40 m (length of excavation) 

BE = 25 m (width of excavation) 

Hf = 10 m (final excavation depth) 

Find Design Parameters:   

t (wall thickness), L (wall length) 

S (strut spacing), EA (strut stiffness) 

Subject to Constraints:      

t  {0.5 m, 0.6 m, 0.7 m, …, 1.3 m}  

L  {20 m, 20.5 m, 21 m,…, 30 m} 

S  {1.5 m, 2 m, 3 m, 6 m} 

EA  {H300, H350, H400, 2@H350, 2@H400} 

Mean factor of safety for push- in and basal heave 1.5 (Ou 2006) 

Mean maximum wall deflection 7 cm (0.7%Hf , PSCG 2000) 

Objective: 

Minimizing the std. dev. of the maximum wall deflection (cm) 

Minimizing the cost for the supporting system (USD) 

 

Fig. 12 Formulation of multi-objective optimization for design 
of braced excavation (modified after Juang et al. 2013b) 
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Fig. 13  Pareto Front for design of braced excavation 

Although the Pareto Front provides a valuable tool the de-
signer may use to make a more informed decision, the designer 
may prefer a single most optimal design instead of a set of opti-
mal designs. Thus, a knee point concept based on gain-sacrifice 
relationship is further used to refine the decision making that 
seeks a single most preferred design. The knee point is defined as 
the point on the Pareto Front where any departure from this point 
requires a large sacrifice in one objective to achieve a small gain 
in the other objective. Based on the normal boundary intersection 
method (Deb et al. 2011), the knee point can be indentified as the 
point on the Pareto Front that has the maximum distance from the 
boundary line. The boundary line is the line that connects two 
boundary points on the Pareto Front.  
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With the normal boundary intersection method, the knee 
point in Fig. 13 is readily identified, as shown in Fig. 14. This 
knee point (optimal design) has the following parameters: t   
0.6 m, L  20 m, S  1.5 m and EA  stiffness of H400 strut with 
a cost of 0.68  106 USD. As shown in Fig. 14, below this cost 
level, a slight gain in cost reduction requires a large sacrifice in 
design robustness (as reflected by a markedly increase in the 
variation of the maximum wall deflection). Above this cost level, 
a slight gain in improved robustness requires a large increase in 
cost, rendering it cost inefficient (Juang et al. 2013b). 
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Fig. 14 Knee point identification for design of braced excavation 

7. CONCLUSIONS 

In this paper the authors present their novel Robust Ge-
otechnical Design (RGD) methodology and its applications in 
several geotechnical problems including design of drill shaft, 
shallow foundation, and braced excavation. The purpose of this 
proposed RGD approach is to reduce the effect of uncertainties in 
the noise factors (e.g., parameter and model uncertainties) by 
carefully adjusting the design parameters. Within the RGD 
framework, a multi-objective optimization is performed to iden-
tify optimal designs that are both cost-efficient and robust, while 
satisfying the safety requirements. Through this optimization, a 
Pareto Front is derived, which usually describes a trade-off rela-
tionship between cost and robustness at a given safety level. The 
derived Pareto Front provides a valuable tool for the designer to 
make a more informed design decision. 
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LIST OF SYMBOLS 

 T  target reliability index 

   computed reliability index 

   feasibility robustness index 

 c'  effective cohesion 

 d  vector of design parameters 

 F50  50-year return period load  

 G  permanent load component 

   drained friction angle 

 K0  coefficient of earth pressure at rest 
kh / 'v  normalized modulus of horizontal subgrade 

reaction 

 p  mean of computed failure probability 

 pT  target failure probability  

 pf  computed failure probability 

 P0  confidence probability 

 QULS  ULS compression capacity  

 QSLS  SLS compression capacity 

 Q  transient load component 

 qs  surcharge behind the wall 

su / 'v  normalized undrained shear strength 
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