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ABSTRACT 

Quantification of uncertainties in soil parameters and geotechnical models is a prerequisite for a reliability-based design. If 
there is abundant amount of high quality data that can characterize the adopted geotechnical model and its parameters perfectly, 
the result of reliability analysis will be a certain value (a fixed reliability index or failure probability). Then, the reliability-based 
design will be a straightforward process and the least cost design that satisfies the constraint of a target failure probability can be 
selected as the final design. If uncertainty exists in the statistical characterization of the adopted geotechnical models and their 
parameters, as is usually encountered in geotechnical practice, then the computed failure probability will not be a fixed value and 
the design decision will not be as straightforward, as there will be uncertainty as to whether the design actually meets the failure 
probability requirement. To reduce the effect of uncertainty of the statistical characterization of the adopted geotechnical models 
and soil parameters, a new geotechnical design approach, called reliability-based robust geotechnical design (RGD) method, is 
developed. This new design methodology is aimed at achieving a certain level of design robustness, in addition to meeting safety 
and cost requirements. Here, a design is deemed “robust” if the predicted system response is “insensitive” to the uncertainty of the 
statistical characterization of soil parameters and model factors. A Pareto Front, which describes a trade-off relationship between 
cost and robustness at a given safety level, is established through a multi-objective optimization based on the RGD concept. The 
new design methodology is illustrated with an example of spread foundation design. The significance of this methodology is 
elaborated and demonstrated in this paper. 
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1. INTRODUCTION 
Uncertainties in geotechnical models and parameters and 

their effect have long been recognized (Lacasse and Nadim 1994; 
Gilbert and Tang 1995; Phoon and Kulhawy 1999; Whitman 
2000; Juang et al. 2004; Schuster et al. 2008; Zhang et al. 2009; 
Juang et al. 2009; Zhang et al. 2012). To perform a geotechnical 
design using deterministic approach, “conservative” values of the 
uncertain soil parameters are often adopted along with an ex-
perience-calibrated factor of safety. While the deterministic ap-
proach has been successfully used for many decades, it lacks the 
capability to render a consistent measure of safety of the geo-
technical system in the face of uncertainties. To obtain a more 
rational design, many investigators (e.g., Wu et al. 1989; Chris-
tian et al. 1994; Whitman 2000; Phoon et al. 2003a,b; Fenton et 

al. 2005; Najjar and Gilbert 2009; Wang 2011; Zhang et al. 
2011) have turned to a probabilistic approach.  

Quantification of the uncertainties in soil parameters and 
geotechnical models is a prerequisite for probability or reliabil-
ity-based design. If there is abundant amount of quality data that 
can characterize the statistics of the adopted geotechnical model 
and its parameters, the result of reliability analysis will be a cer-
tain value (a fixed reliability index or failure probability). Thus, 
the design meeting the target reliability (i.e., safety) requirements 
with least cost would be the “best” choice, and the reliability- 
based design would be a straightforward process. However, the 
statistics of soil parameters and model factor (which quantifies 
the accuracy and precision of the adopted geotechnical model) 
are quite difficult to ascertain due to lack of data and/or incom-
plete knowledge. If the statistics of model factor and input pa-
rameters cannot be characterized with certainty, the computed 
failure probability will not be a fixed value. The design decision 
will not be straightforward with a variable failure probability. In 
such a scenario, a difficult trade-off decision may be required. 

One way to reduce the effect of the uncertainties of statisti-
cal characterization of soil parameters and model factors is con-
sidering robustness of the system response (e.g., failure probabil-
ity of the designed geotechnical system) against these uncertain-
ties. A design is deemed “robust” if the predicted system re-
sponse is “insensitive” to the uncertainties of the statistical char-
acterization of soil parameters and model factors. By considering 
robustness explicitly in the reliability-based design optimization, 
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as is shown later, a more informed design decision may be made.  
Robust design concept, originally proposed by Taguchi 

(1986) for product quality control in manufacturing engineering, 
has been applied to many design fields including mechanical 
design, aeronautical design and structural design (e.g., Chen et al. 
1996; Tsui 1999; Lagaros and Fragiadakis 2007; Marano et al. 
2008; Lee et al. 2010; Paiva 2010). From the perspective of a 
designer aiming to achieve a robust design, the input parameters 
for the design can be divided into two groups: Easy-to-control 
and hard-to-control parameters. In the context of robust design, 
the easy-to-control parameters such as dimension of a foundation 
are called design parameters, while the hard-to-control factors 
such as uncertain soil parameters and model factors are called 
noise factors. Assuming that the uncertainty of these noise factors 
cannot be eliminated (or further reduced because of inherent vari-
ability or lack of data), the aim is then to reduce the effects of the 
uncertainty of these noise factors on the response of the system. 
Thus, Robust Design aims to find a design (represented by a set 
of design parameters) that is robust against the uncertainty of 
these noise factors, thereby reducing the variability of the system 
response. 

In this paper, a reliability-based robust geotechnical design 
(RGD) methodology is introduced. Here, the objective of RGD is 
to ensure the robustness of reliability-based design even if the 
statistics of noise factors are not precisely defined (meaning that 
uncertainty exists in the estimated statistical moments of these 
noise factors). When robustness is included in the design decision 
along with safety (reliability) and cost, the search for the “best” 
design becomes a multi-objective optimization problem. One 
possible approach is to treat the safety requirement as a constraint 
(for example, by requiring the failure probability of the design to 
be less than the acceptable target failure probability) in an opti-
mization with respect to cost and robustness. Recall that in a tra-
ditional reliability-based design, the safety requirement is used as 
a constraint and the design is optimized with respect to one ob-
jective, cost. Thus, the new RGD approach is seen as an exten-
sion of the traditional reliability-based design. 

To illustrate the RGD framework, the design of a shallow 
foundation in cohesionless soil is used as an example herein. The 
normalized load-settlement curve approach (Akbas and Kulhawy 
2009a; Akbas and Kulhawy 2011), which ensures uniformity in 
the reliability analysis across both ultimate limit state (ULS) and 
serviceability limit state (SLS), is adopted for the design of shal-
low foundation. Through the examples presented, the effective-
ness of the reliability-based RGD approach and the significance 
of considering robustness in the design process are clearly dem-
onstrated. 

2. DETERMINISTIC MODELS FOR ULS AND 
SLS CAPACITY OF SHALLOW 
FOUNDATION 

The procedure for calculating the ULS capacity of shallow 
foundation in cohesionless soil under compressive loads pro-
posed by Vesić (1975), with minor improvements by Kulhawy et 
al. (1983), is adopted in this paper. Based on the extensive data-
base of field testing, Akbas and Kulhawy (2009b) demonstrated 
that the ULS capacity estimated by Vesić model as updated by 
Kulhawy et al. (1983) agreed well with the field testing results 

when the foundation width B ≥ 1 m. The ULS capacity (RULS) of a 
shallow foundation with width B, length L, and embedment depth 
D is calculated as follows (Vesić 1975; Akbas and Kulhawy 
2009b): 

      (1/ 2) ( )ULS s d r q qs qd qrR B N q N BLγ γ γ γ′ ′= γ ξ ξ ζ + ξ ξ ζ⎡ ⎤⎣ ⎦  (1) 

where γ′ = effective unit weight of soil below foundation; q′ = 
effective overburden stress at foundation level; and Nγ and Nγ are 
bearing capacity factors defined as (Vesić 1975): 

2( 1) tanqN Nγ ′≈ + φ   (2) 

tan 2tan (45 / 2)qN e ′π φ ′= + φ  (3) 

And ζγs and ζqs = shape correction factors; ζγd and ζqd = 
depth correction factors; and ζγr and ζqr = rigidity correction fac-
tors. Detailed formulations for these correction factors are docu-
mented in Kulhawy et al. (1983). 

The ULS failure is checked by comparing the bearing capac-
ity (RULS, as “resistance”) with the applied loading G + Q, where 
G is the permanent load and Q is the transient load. The condi-
tion RULS < G + Q denotes the ULS failure of shallow foundation. 

For the SLS capacity (RSLS) of shallow foundation, Akbas 
and Kulhawy (2011) derived the following equation based on the 
normalized load-settlement behavior of shallow foundation:  

( / )
( / )
ULS t

SLS
t

R s BR
a s B b

=
+

  (4) 

where st is the allowable settlement limit (in this paper, 25 mm), 
B is the width of the foundation, and the coefficients a and b are 
parameters of a hyperbolic model that fit the normalized load- 
settlement curve defined below (Akbas and Kulhawy 2009a): 

/
( / )ULS

G Q s B
R a s B b

+
=

+
  (5) 

where (G + Q)/RULS is the normalized loading, and s is the corre-
sponding settlement. Based on data from 167 full-scale tests, the 
mean and coefficient of variation (COV) of a and b are μa = 0.70 
and δa = 22%, and μb = 1.77and δb = 54%, respectively. 

It is noted that the normalized load-settlement curve ap-
proach with Eqs. (4) and (5) provides a framework to correlate 
the ULS capacity with the SLS capacity, and thus, the two limit 
states can be treated uniformly. For a given design (with known 
B, L and D), if the ULS bearing capacity (RULS) is less than the 
applied load G + Q, the ULS failure is said to occur. The SLS 
failure is said to occur if the bearing capacity at the allowable 
settlement limit (RSLS) is less than the applied load G + Q.  

3. ESTIMATION OF COST FOR SHALLOW 
FOUNDATIONS 

The total cost for a shallow foundation is determined using 
the cost summation of five individual tasks in foundation con-
struction (Wang and Kulhawy 2008): 

    e e f f c c r r b bZ Q c Q c Q c Q c Q c= + + + +  (6) 
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where Qe, Qf, Qc, Qr, Qb = quantities for excavation, formwork, 
concrete, reinforcement, and compacted backfill, respectively; ce, 
cf, cc, cr, cb = unit prices for excavation, formwork, concrete, re-
inforcement, and compacted backfill, respectively. Table 1 gives 
the U.S. average unit price for construction of shallow foundation 
compiled by Wang and Kulhawy (2008). The five quantities Qe, 
Qf, Qc, Qr, Qb depend on the design parameters, foundation width 
B, length L, and embedment depth D. The reader is referred to 
Wang and Kulhawy (2008) for details. 

4. DESIGN EXAMPLE OF SHALLOW 
FOUNDATION 

An example of shallow foundation is used to illustrate the 
proposed reliability-based robust geotechnical design (RGD) 
approach. A square foundation (B = L), as shown in Fig. 1, is to 
be designed to support vertical compressive loads with a perma-
nent load component of G = 2000 kN and a transient load com-
ponent of Q = 1000 kN. G and Q are assumed to follow log-
normal distribution with a COV of G of 10% and a COV of Q of 
18% (Zhang et al. 2011).   

The soil profile at the site is assumed to follow the example 
presented by Orr and Farrel (1999), which consists of a homoge-
neous dry sand with a deterministic unit weight of γ = 18.5 
kN/m3. Ten effective friction angles φ′ (for dry sand, c′ = 0) are 
obtained from triaxial tests conducted on samples of this homo-
geneous sand and the results are listed in Table 2. The ground 
water is assumed to be well below any topsoil and disturbed 
ground such that it has negligible effects on the shallow founda-
tion design. The maximum allowable settlement is set at 25 mm 
for this foundation design. 

5. STATISTICAL CHARACTERIZATION OF 
UNCERTAINTY IN NOISE FACTORS 

5.1 Bootstrapping for Characterizing Uncertainty in 
Sample Statistics 

In geotechnical engineering practice, soil parameters are 
usually derived with a small sample, thus the derived sample 
statistics (such as mean and standard deviation) are often sub-
jected to error. These derived sample statistics, which are re-
quired in reliability analysis and design, are often uncertain and 
should be modeled as random variables. To characterize the un-
certainty in these sample statistics, non-parametric bootstrap 
method may be used (Luo et al. 2012b). Bootstrapping is a re- 
sampling technique that yields an estimate of the mean and stan-
dard deviation of the sample statistics.   

In reference to Fig. 2, the procedure for bootstrapping is 
summarized below (Bourdeau and Amundaray 2005; Luo et al. 
2012b): 
 1. Based on the original sample A (with k elements or data 

points), a large number (N) of re-samples, ,   = 1, jA j N∗ , 
are formed by “random sampling with replacement,” which 
means that each element (for example, ,1ja∗ ) of jA∗  can 
assume the value of any of the elements of A. In this study, 
N = 10,000 is adopted.  

Table 1 Unit price for shallow foundation (data from Wang 
and Kulhawy 2008) 

Work item Unit National average unit price in U.S. (USD)

Excavation m3 25.16 

Formwork m3 51.97 

Reinforcement kg 2.16 

Concrete m3 173.96 

Compacted backfill m3 3.97 

Table 2 Triaxial test results of effective friction angle (data 
from Orr and Farrell 1999) 

Test No. φ′(°) 
1 33.0 
2 35.0 
3 33.5 
4 32.5 
5 37.5 
6 34.5 
7 36.0 
8 31.5 
9 37.0 
10 33.5 

  

B = L= ?

D = ?

G = 2000 kN 

Q = 1000 kN 

 
Fig. 1  A square shallow foundation design example 

 2. For each re-sample, jA∗ , the statistics of interested Xi (e.g., 
mean and standard deviation) are computed. 

 3. The mean (μXi) and standard deviation (σXi) of statistics Xi 
can be computed once Steps 2 has been repeated N times.  
With only 10 data of φ′ listed in Table 2, there is uncertainty 

concerning the mean and standard deviation derived from this 
sample. Thus, bootstrapping method is applied to evaluate the 
uncertainty of the sample mean and standard deviation. While not 
shown here, it took less than 10,000 bootstrap samples to obtain 
converged results in this study. With N = 10,000, the histograms 
of the mean (μS) and standard deviation (σS) of φ′ is obtained as 
shown in Fig. 3. Both μS and σS can be approximated well with a 
normal distribution in this example. Table 3 shows the mean and 
standard deviation of both μS and σS. It can be found that the 
variation of sample mean μS is quite negligible (COV of μS ≈ 
1.7%), while the variation of sample standard deviation σS is 
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Fig. 2 Illustration of bootstrap procedure for characterizing 

uncertainty in sample statistics 
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Fig. 3 Probability distribution of sample statistics of φ′: 
(a) mean; (b) standard deviation 

Table 3 Sample statistics of effective friction angle φ′ by boot-
strapping method 

Uncertain variables μS (°) σS (°) 

Mean 34.40 1.84 

Std. dev. 0.59 0.33 
 
 

large (COV of σS ≈ 17.9%). This suggests that the standard de-
viation of soil parameters estimated from a small sample is usu-
ally not precise (i.e., having a large variation), while the sample 
mean is generally quite precise, which is consistent with the sta-
tistical theory. 

5.2  Statistical Characterization of Model Uncertainty 

Model uncertainty is often significant in a geotechnical 
analysis. In fact, Zhang et al. (2009) has demonstrated that a 
geotechnical design that did not include model uncertainty in the 
analysis could be un-conservative even if parametric uncertainty 
was fully characterized. The model uncertainty is usually cali-
brated using statistical methods (Phoon and Kulhawy 2005; 
Dithinde et al. 2011) if data is available. For example, a multi-
plicative model is often employed to describe the model uncer-
tainty using a model bias factor (or model factor): 

observed value
predicted value

o
Q

P

QBF
Q

= =  (7) 

For the ULS capacity of shallow foundation, the predicted 
capacity is the calculated RULS, while the observed capacity is the 
“interpreted failure load” obtained from full-scale field load test. 
In this paper, the database of field load tests compiled by Akbas 
and Kulhawy (2009b) is used to compute the mean (μBF) and 
standard deviation (σBF) of bias factor BFQ. Then, the bootstrap-
ping method is used to characterize the uncertainty in μBF and σBF. 
A summary of the statistical characterization of μBF and σBF is 
provided in Table 4.  

For the SLS failure, the model uncertainty parameters are re-
flected in parameters a and b, in addition to the bias factor BFQ. 
In this paper, the mean (μa) and standard deviation (σa) of pa-
rameter a, the mean (μb) and standard deviation (σb) of parameter 
b, and the correlation coefficient (ρab) between a and b are calcu-
lated using the database compiled by Akbas and Kulhawy 
(2009a). To evaluate the possible variation in these statistical 
parameters, the bootstrapping method is employed, and the re-
sults are shown in Table 5.  

6. RELIABILITY-BASED ROBUST 
GEOTECHNICAL DESIGN 

An outline for reliability-based robust geotechnical design 
(RGD) is presented below, using shallow foundation design in cohe-
sionless soil as an example. In reference to Fig. 4, the RGD approach 
is summarized in the following steps (with commentaries): 

6.1  Step 1 

Characterize the uncertainty in the sample statistics of noise 
factors (including both key soil parameters and model factors) 
and identify the design domain. This step is shown as the first 
two blocks in the left side of the flowchart shown in Fig. 4. 
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Fig. 4  Flowchart illustrating robust geotechnical design of shallow foundation (Juang and Wang 2013) 

Table 4 Sample statistics of model bias factor BFQ by 
bootstrapping method 

Uncertain variables μBF  σBF  

Mean  1.010 0.203 

Std. dev. 0.033 0.034 

Table 5 Results from bootstrapping method for estimating 
uncertainty in statistics of a and b 

Uncertain 
variables μa μb σa σb ρab 

Mean 0.6992 1.7675 0.1549 0.9416 −0.7177

Std. dev 0.0139 0.0845 0.0125 0.0794 0.0472

 
 
For the design of shallow foundation in cohesionless soils, soil 
parameter φ′, the ULS model factor BFQ and the two curve fitting 
parameters a and b of the SLS model are identified as noise fac-
tors. The uncertainty in the statistics (mean and standard devia-
tion) of each of the noise factors may be estimated with boot-
strapping method.  

In the geotechnical design of a square shallow foundation, 
the design parameters are the foundation width B and the em-
bedment depth D. The design range for footing width B typically 
varies from a minimum of 1 m to a maximum value of 5 m (Ak-
bas 2007; Akbas and Kulhawy 2011). The minimum foundation 
embedment depth D is set at 1 m based on the load level in this 
example (Coduto 2000), and the maximum depth is set at 2 m to 
minimize the disturbance to adjacent structures (Wang and Kul-
hawy 2008). For a shallow foundation, the ratio of embedment 
depth to foundation width (D/B) is generally kept below 4. Of 
course, the engineer may have to consider local design concerns 

such as expansive soils, collapsing soils, frost heave, or construc-
tion issues. Thus, different constraints may be adopted to identify 
the domain of design parameters.  

For convenience of construction, the foundation dimensions 
are typically rounded to the nearest 0.1 m (Wang 2011). Thus, 
within the constraints of three geometric requirements, namely, 1 
≤ B ≤ 5; 1 ≤ D ≤ 2; (D/B) < 4, a finite number of designs (each 
represented by a pair of B and D) can be identified. For example, 
for the shallow foundation (Fig. 1) considered in this paper, the 
number of possible designs in the design domain is M ≈ 450.  

6.2  Step 2 

For each design, determine the mean failure probability of 
the design and the standard deviation of the failure probability. 
This step is shown as the inner loop (Fig. 4) that ends in the bot-
tom block in the left side of the flowchart. In this paper, the fail-
ure probability based on either ultimate limit state (ULS) or ser-
viceability limit state (SLS) is used as a measure of system re-
sponse. Recall that a design is considered robust if the variation 
of its system response caused by the uncertainty of noise factors 
is small. The variation of the failure probability is mainly caused 
by the variation of the derived statistics of the noise factors. Thus, 
in this step the mean and standard deviation (as a measure of 
robustness) of the failure probability are evaluated based on a 
modified point estimate method (PEM; Zhao and Ono 2000).  

When mean (μS) and standard deviation (σS) of φ′, as well as 
mean (μBF) and standard deviation (σBF) of model factor BFQ. are 
fixed values, the traditional reliability analysis using, for example, 
first order reliability method (FORM; see Ang and Tang 1984) 
will yield a fixed value for ULS failure probability. Of course, the 
resulting ULS failure probability will no longer be a fixed value 
if uncertainties exist in μS, σS, μBF and σBF, and they have to be 
treated as random variables. In such a scenario, the variation of 
the ULS failure probability can be obtained using PEM with 4 
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input random variables, μS, σS, μBF and σBF. Detailed formulation 
for PEM with multiple input variables can be found in Zhao and 
Ono (2000). Similarly, the variation of the SLS failure probability 
is caused by uncertainty in the statistical moments of noise fac-
tors, and thus can be evaluated with 9 input random variables, 
including μS, σS, μBF, σBF, μa, σa, μb, σb and ρab. Again, the PEM 
procedure by Zhao and Ono (2000) can be used to evaluate the 
variation of the SLS failure probability. 

The PEM approach requires an evaluation of the failure 
probability at each of a set of “estimating” points (or sampling 
points) of the input random variables. Thus, the computation of 
the failure probability needs to be repeated for a total of N = 7 × k 
times, where k is the number of input random variables and the 
multiplier “7” represents the seven sampling points that are re-
quired in the seven-point PEM formulation by Zhao and Ono 
(2000). In each repetition, statistics of input random variables at 
each PEM estimating point must be assigned, and then the failure 
probability is evaluated using FORM. The resulting N failure 
probabilities (at the completion of the inner loop shown in Fig. 4) 
are then used to compute the mean and standard deviation of the 
failure probability.  

6.3  Step 3 

Repeat Step 2 for each of the M designs in the design do-
main. For each design, the mean and standard deviation of the 
failure probability are determined. This step is represented by the 
outer loop shown in Fig. 2.  

6.4  Step 4 

Perform a multi-objective optimization using non- domi-
nated sorting genetic algorithm to establish a Pareto Front, fol-
lowed by determination of feasibility robustness for choosing 
best design. This step is represents by the last two blocks (in the 
right side) of the flowchart shown in Fig. 4. 

In the proposed RGD methodology, multi-objective optimi-
zation is required. In the illustrative example presented later, cost 
and design robustness are set as the objectives and safety (reli-
ability) is achieved by means of a set of constraints. This is quite 
similar to the traditional reliability-based design except that the 
design robustness is explicitly considered as an additional objec-
tive. It is noted that the robustness in terms of standard deviation 
of the failure probability for each design is obtained in Step 3.  

The concept of Pareto Front is briefly introduced with Fig. 5. 
When multiple objectives (in this case, two objectives) are en-
forced, it is likely that no single best design exists that is superior 
to all other designs in all objectives. However, a set of designs 
(such as D2, D3, and D4 shown in Fig. 5) may exist that are supe-
rior to all other designs (such as D1) in all objectives; but within 
the set, none of them is superior or inferior to others in all objec-
tives. For example, D3 is superior to D4 in objective 1, but is in-
ferior to D4 in objective 2. This set of optimal designs constitutes 
a Pareto Front (Ghosh and Dehuri 2004). 

Selection of a set of optimal designs (such as D2, D3, and D4) 
that constitute Pareto Front is a multi-objective optimization 
problem. In this paper, the Non-dominated Sorting Genetic Algo-
rithm version II (NSGA-II), developed by Deb et al. (2002), 
summarized later, is used for establishing the Pareto Front for its 
accuracy and efficiency. 

 

Meausre in Objective 2

 
1D

4D

2D

3D

Design Domain

Pareto Front

 
Fig. 5 Illustration of Pareto Front constituted by non-    

dominated optimum designs 

7. TRADITIONAL RELIABILITY-BASED DE-
SIGN OF SHALLOW FOUNDATION 

The traditional reliability-based design of square shallow 
foundation is first presented herein to provide a reference. The 
spread foundation example is shown in Fig. 1 and statistics of 
uncertain parameters are assumed with a fixed value (that is, 
taking only mean values of these statistics in Tables 3, 4, and 5). 
The probability of SLS and ULS failure for each design for a 
combination of vertical permanent load component of G and 
variable load of Q is determined using FORM. This analysis is 
repeated for all possible designs in the design space. For illustra-
tion purpose, the results (i.e., failure probabilities) are plotted 
only for designs with D = 1.0 m, 1.5 m and 2.0 m, as shown in 
Fig. 6.  

It can be seen from Fig. 6 that the probabilities of both ULS 
failure and SLS failure decrease with the increase of B and D. 
The probability of failure for ULS and SLS is quite similar. As 
the ULS failure probability requirement is more stringent than the 
SLS failure probability requirement in this case, the former con-
trols the design of shallow foundations, which is consistent with 
previous investigations (Wang and Kulhawy 2008; Wang 2011). 

In a traditional reliability-based design, the reliability is used 
as a constraint to screen for acceptable designs, and then the best 
design is attained by selecting the least-cost design (Zhang et al. 
2011). In this paper, the procedure for cost estimation by Wang 
and Kulhawy (2008), described previously, is adopted. It should 
be noted that cost estimation is not the focus of this paper, and 
that the proposed RGD approach is not dependent on any par-
ticular cost estimation method. In fact, any reasonable cost esti-
mation methods can be used.   

In the example discussed herein (Fig. 1), the reliability re-
quirements defined in Eurocode 7 for foundation design, specifi-
cally, the target ULS reliability index 3.8ULS

Tβ =  (correspond-
ing to 57.2 10ULS

Tp −= × ) and the target SLS reliability index 
1.5SLS

Tβ =  (corresponding to 26.7 10SLS
Tp −= × ), are adopted 

(Wang 2011). If the minimum cost is the only criteria for select-
ing the “best” design after screening with reliability requirements, 
then the design with B = 1.9 m and D = 2.0 m will be selected.  

The traditional reliability-based design is predicated on the 
accuracy of the estimated statistics of soil parameters and model 
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Fig. 6 Probabilities of failure of selected designs with fixed 
mean and standard deviation of noise factors: (a) ULS 
failure; (b) SLS failure 

factors. To demonstrate the effect of the uncertainty of these es-
timated statistics on the reliability-based design, a series of 
analyses is performed. For demonstration purposes, the mean of 
each noise factor (soil parameters or model factor) is set at its 
sample mean and the standard deviation of each noise factor is 
assumed to vary in the range of 95% confidence interval. 

Although not shown here, the uncertainty in the statistics of 
SLS model factor has little effect on the final design, which is 
consistent with previous finding that the ULS failure controls the 
design. Thus, only the variation in standard deviation of φ′, de-
noted as σS, and the variation in standard deviation of BFQ, de-
noted as σBF, are considered. For illustration purposes, both σS 
and σBF are assumed three different levels, namely, low, medium, 
and high variation. These three levels of variation are arbitrarily 
assigned to be at the lower bound of the 95% confidence interval, 
the mean value, and the upper bound of the 95% confidence in-
terval.  

Table 6 shows the least cost designs that satisfy the target 
failure probability requirement ( 57.2 10ULS ULS

f Tp p −< = × ) at 
various levels of σS and σBF. The results show that the least cost 
designs are sensitive to the assumed σS and σBF. Under the lowest 
level of σS and σBF (among all cases in Table 6), the least cost 
design costs 769.4 USD, while it costs 1404.0 USD under the 
highest level of variation. Thus, in a traditional reliability-based 
design that uses target failure probability as a constraint, the se-
lection of “best” design based solely on least cost is meaningful 
only if the statistics of noise factors (soil parameters and model 
factors) can be ascertained.   

Table 6 Least-cost designs under various standard deviation 
levels in noise factors 

σS (°) σBF B (m) D (m) Cost (USD)
1.12 0.148 1.6 2.0 769.4 
1.12 0.203 1.8 1.8 910.8 
1.12 0.260 1.9 2.0 1026.0 
1.84 0.148 1.8 2.0 936.5 
1.84 0.203 1.9 2.0 1026.0 
1.84 0.260 2.1 1.9 1200.1 
2.43 0.148 2.0 1.9 1104.0 
2.43 0.203 2.1 2.0 1216.9 
2.43 0.260 2.3 1.9 1404.0 

 
 

 

If the standard deviation of noise factors is underestimated 
by a certain margin, then it is likely that an acceptable design (a 
design that meets ULS target failure probability) will no longer 
be satisfactory. For example, the design (B = 1.9 m and D = 2.0 m) 
was acceptable (meeting the target failure probability) at the un-
certainty level of σS = 1.84° and σBF = 0.203. This design is 
re-analyzed with various levels of uncertainty. The results are 
shown in Table 7, which indicate that in many instances (where 
the uncertainty levels are higher than the level that was assumed 
in the previous design), the target ULS failure probability 
( 57.2 10ULS

Tp −= × ) is no longer satisfied.  

8. RELIABILITY-BASED ROBUST 
GEOTECHNICAL DESIGN (RGD) 

One way to reduce the effect of the uncertainty of the statis-
tical characterization of soil parameters and model factors in a 
reliability-based design is considering robustness explicitly in the 
design. In this section, the reliability-based RGD methodology 
outlined previously is applied to the same shallow foundation 
design (see Fig. 1). For this demonstration exercise, the statistics 
of the noise factors listed in Tables 3, 4, and 5 are included in the 
analysis. 

As per the flowchart of the RGD procedure shown in Fig. 4, 
the mean and standard deviation of the ULS failure probability, 
denoted as ULS

pμ  and ULS
pσ , respectively, can be obtained for 

all possible designs in the design space using PEM. Since ULS 
controls the design in this case, only the ULS failure probability 
is of concern here. As an example, Fig. 7 shows the mean ULS 
failure probability ( ULS

pμ ) for selected designs with D = 1.0 m, 
1.5 m and 2.0 m. Similarly, Fig. 8 shows the standard deviation 
of the ULS failure probability ( ULS

pσ ) of selected acceptable de-
signs with D = 1.0 m, 1.5 m and 2.0 m.  

Because many designs that meet the safety requirement of 
57.2 10ULS ULS

f Tp p −< = ×  are associated with different levels of 
robustness (in terms of ULS

pσ ) and cost, a multi-objective opti-
mization is needed.  
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Table 7 ULS failure probability of a given design (B = 1.9 m, 
D = 2.0 m) under different uncertainty levels in noise 
factors 

σS (°) σBF B (m) D (m) ULS failure probability, ULS
fp

1.12 0.148 1.9 2.0 2.01E-08 
1.12 0.203 1.9 2.0 1.95E-06 
1.12 0.260 1.9 2.0 4.68E-05 
1.84 0.148 1.9 2.0 6.83E-06 
1.84 0.203 1.9 2.0 6.36E-05 
1.84 0.260 1.9 2.0 3.83E-04 
2.43 0.148 1.9 2.0 1.30E-04 
2.43 0.203 1.9 2.0 4.77E-04 
2.43 0.260 1.9 2.0 1.50E-03 

 

Fig. 7 Mean ULS failure probabilities of selected designs 
considering variation in statistics of noise factors 
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Fig. 8 Standard deviation of ULS failure probabilities of se-

lected acceptable designs considering variation in statis-
tics of noise factors 

8.1 NSGA-II Algorithm to Obtain Pareto Front 

As noted previously, the NSGA-II algorithm (Deb et al. 
2002) is employed to search for the Pareto Front in the design 
space. The NSGA-II algorithm is summarized in the following 
(with reference to Fig. 9). First, a random “parent population” P0 
from the design space is created with a size of n. The term “par-
ent population” is widely used in Genetic Algorithm (GA); here, 
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Fig. 9 An Illustration of NSGA-II algorithm (Deb et al. 2002) 

it can be thought of as the first trial set of “optimal” designs. A 
series of genetic algorithm (GA) operations such as mutation and 
crossover are performed on “parent population” P0 to generate 
the “offspring population” Q0 with the same size of N. Then, an 
iterative process is adopted to refine the parent population. In the 
GA, each step in the iteration is termed as a “generation”. 

In the tth generation, the parent population Pt and the off-
spring population Qt are combined to form an intermediate 
population Rt = Pt ∪ Qt with a size of 2n. Non-dominated sorting 
is next performed on Rt, which groups the points in Rt into dif-
ferent levels of non-dominated fronts. For example, the best class 
is labeled F1, and the second best class is labeled F2, and so on. 
The best n points are selected into parent population of the next 
generation, Pt+1. Using the scenario illustrated in Fig. 9 as an 
example, if the number of points in F1 and F2 is less than n, they 
will all be selected into Pt+1. Then, if the number of points in F1 
and F2 and F3 exceeds the population size n, the points in F3 are 
sorted using the “crowding distance” sorting technique (Deb et al. 
2002), which aims to maintain the diversity in the selected points. 
Thus, the best points in F3 are selected to fill all remaining slots 
in the next population Pt+1. After obtaining Pt+1 in the tth genera-
tion, Pt+1 is then treated as the parent population in the next gen-
eration and the process is repeated until Pt+1 is converged. The 
final, converged Pt+1 is the Pareto Front (Juang and Wang 2013).  

In the shallow foundation design example, this optimization 
with NSGA-II may be achieved by using target failure probabil-
ity as a constraint and robustness and cost as objectives. Sym-
bolically, this optimization can be set up as follows:  

Find d = [B, D] 

Subject to:  B ∈ {1.0 m, 1.1 m, 1.2 m, …, 5.0 m } and 
D ∈ {1.0 m, 1.1 m, 1.2 m, …, 2.0 m} 

57.2 10ULS ULS
p Tp −μ < = ×  

Objectives:  Minimizing the standard deviation of ULS failure 
probability (σp) 
Minimizing the cost for shallow foundation.  
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As with any Genetic Algorithm (GA) process, the design 
parameters (B and D in this case) are generated in the discrete 
space. The population size of 100 with 100 generations is used in 
the NSGA-II optimization (Deb et al. 2002). Although not shown 
here, the points on the Pareto Front (a set of optimum designs) 
are initially very scattered, but gradually converge. For this shal-
low foundation design (Fig. 1), converged results are obtained at 
20th generation. At convergence, 62 “unique” designs are selected 
into the Pareto Front, as shown in Fig. 10. It can easily be ob-
served that there is an obvious trade-off relationship between cost 
and robustness. The obtained Pareto Front can be used as a de-
sign aid for the decision maker to select the “best” design based 
on the desired target cost or robustness level.  

8.2 Selection of Best Design Based on Feasibility 
Robustness 

The Pareto Front shown in Fig. 10 uses the standard devia-
tion of the failure probability directly as a measure of robustness. 
While this Pareto Front provides a trade-off relationship that can 
aid in making informed design decisions, it may be desirable to 
use a relative measure of robustness, a more user-friendly index. 
Thus, the results shown in Fig. 10 are further refined.  

“Feasibility robustness,” as defined by Parkinson et al. 
(1993), is the design that can maintain feasible (or safe) status 
relative to the nominal constraint for a definable probability as it 
undergoes variations. For the design example of shallow founda-
tion, the ultimate limit state (ULS) requirement controls the de-
sign. In the safety constraint that requires the ULS failure prob-
ability to be less than the target probability, ULS ULS

f Tp p≤ =  7.2 
× 10−5, the failure probability ( ULS

fp ) at a given state is a random 
variable that depends on the uncertainty in statistics of noise fac-
tors, and the target probability is a fixed value. Symbolically, 
feasibility robustness can be formulated as follows: 

0Pr ( ) 0ULS ULS
f Tp p P⎡ ⎤− < ≥⎣ ⎦  (8) 

where Pr ( ) 0ULS ULS
f Tp p⎡ ⎤− <⎣ ⎦  is the probability that the ULS 

safety constraint is satisfied, and P0 is an acceptable probability 
pre-defined by the designer. Thus, an index may be created for 
assessing the feasibility robustness.  

0
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3

4
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6

1.E-18 1.E-15 1.E-12 1.E-09 1.E-06 1.E-03

Std. Dev. of Probability of ULS Failure  

Fig. 10 Converged Pareto Front for shallow foundation design 
obtained by NSGA-II based on two-objective (cost and 
robustness) 

Determination of the probability Pr  [( ) 0]ULS ULS
f Tp p− <  

requires the knowledge of the distribution of ULS
fp , which is 

generally difficult to ascertain. Based on the previous studies by 
Most and Knabe (2010) and Luo et al. (2012b), the resulting 
histogram of the reliability index such as βULS (corresponding to 

ULS
fp ) caused by variance in sample statistics can be approxi-

mated with a normal distribution. Thus, an equivalent counterpart 
in the form of Pr  [( ) 0]ULS ULS

Tβ −β > , where 3.8ULS
Tβ =  (cor-

responding to 57.2 10ULS
Tp −= × ), may be used to assess the 

level of feasibility robustness.   
The mean and standard deviation of βULS, denoted as μB and 

σB respectively, can be obtained using FORM integrated with 
PEM. Then, Eq. (8) can be replaced by: 

0Pr ( 3.8) 0 ( )ULS Pβ⎡ ⎤β − > = Φ β ≥⎣ ⎦  (9) 

where Φ is the cumulative standard normal distribution function, 
and ββ is defined as: 

3.8β
β

β

μ −
β =

σ
  (10) 

The term ββ may also be used as an index of feasibility ro-
bustness. The relationship between ββ and the cost for the 62 
designs on the Pareto Front is shown in Fig. 11. As expected, the 
results show that a design with higher feasibility robustness 
(higher ββ) requires a higher cost. Thus, a trade-off between cost 
and robustness is obvious. It is noted that in the lower cost range, 
the curve is relatively flat, indicating that a small increase in cost 
can result in a large increase in feasibility robustness, which is 
cost-efficient. In the higher cost range, however, the slope is rela-
tively sharp, indicating that it costs a lot more to raise robustness, 
which is not cost-efficient. 

By selecting a target feasibility robustness level ( T
β

β ), the 
least-cost design among those on the Pareto Front can readily be 
identified. For example, when the target feasibility robustness is 
set at T

β
β  = 2, which corresponds to an acceptance probability 

of P0 = 97.72%, the least-cost design is B = 2.3 m and D = 2.0 m, 
which costs 1423.7 USD. The least cost designs of the shallow 
foundation corresponding to different target feasibility robustness 
levels are listed in Table 8. The feasibility robustness offers an 
easy-to-use quantitative measure for making an informed design 
decision considering cost and robustness after satisfying the 
safety requirements. 

9. ADDITIONAL DISCUSSION: EFFECT OF 
SPATIAL VARIABILITY 

Recent studies (e.g., Schweiger and Peschl 2005; Griffiths et 
al. 2009; Luo et al. 2011; Luo et al. 2012a) have shown that the 
traditional reliability analysis without considering spatial vari-
ability may yield an overestimation of the failure probability in 
many geotechnical problems. Thus, it would be of interest to 
examine the effect of spatial variability of soil parameters on the 
reliability-based robust design of shallow foundations. To dem-
onstrate the procedure to consider the effect of spatial variability, 
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Fig. 11 Cost versus feasibility robustness for all designs on 
Pareto Front 

Table 8 Selected final designs at various feasibility robustness 
levels 

ββ P0 (%) B (m) D (m) Cost (USD)
1 84.13 2.1 1.9 1200.1 

2 97.72 2.3 2.0 1423.7 

3 99.87 2.6 2.0 1763.7 
4 99.997 3.1 2.0 2409.8 

 
 
the ten effective friction angles φ′ (for dry sand, c′ = 0) listed in 
Table 2 are assumed to have been obtained from triaxial tests 
conducted on samples taken at an equal interval of 1 m in this 
homogeneous sand.  

To characterize the soil spatial variability, it is essential to 
determine a fundamental statistical indicator of spatial variability, 
namely, scale of fluctuation θ, which is defined as the distance 
within which the soil properties show relatively strong correla-
tion from point to point (Vanmarcke 1977 & 1983). Determina-
tion of scale of fluctuation θ generally requires a large amount of 
in-situ or experimental data taken over a wide range at site of 
concern, and many approaches have been proposed to determine 
θ (e.g., DeGroot and Baecher 1993; Baecher and Christian 2003; 
Fenton and Griffiths 2008). However, in this example, as the 
sample size of effective friction angles φ′ is quite small, it is dif-
ficult to determine the scale of fluctuation of φ′. Nevertheless, 
according to Vanmarcke (1977), the vertical scale of fluctuation 
of φ′of a site may be approximately estimated as: 0.8 ( )dθ =  
where d  is the average distance between intersections of fluc-
tuating property and its trend function. Based on the limited data 
in Table 2, d  is estimated to be about 2 m, and thus θ ≈ 1.6 m, 
which is within the typical range of vertical scale of fluctuation, 
θ = 0.5 m to 2.0 m, reported by Cherubini (2000). In the absence 
of sufficient data, for demonstration purpose, the vertical scale of 
fluctuation θ of φ′ is assumed to be a lognormally distributed 
random variable with a mean of 1.6 m and a COV of 0.3 (Luo et 
al. 2012a). On the other hand, the horizontal scale of fluctuation 
is generally much larger than the foundation dimension, typically 

in the range of 10 m to 30 m; thus, the effect of the horizontal 
spatial variability may be neglected for the design of shallow 
foundations (Cherubini 2000).  

One way to consider the effect of spatial variability is 
through a variance reduction technique. Vanmarcke (1983) 
pointed out that the averaged variability of soil properties over a 
large domain can be approximated with an equivalent variance. 
The averaged variance of soil parameter considering the spatial 
average effect can be obtained as: 

2 2 2
Γσ = Γ σ   (11) 

where σ = the standard deviation of soil parameter of concern (φ′ 
in this study); σΓ = the reduced standard deviation of soil pa-
rameter considering the spatial average effect; and Γ is the reduc-
tion factor defined as (assuming an exponential autocorrelation 
structure): 

2
2

2 21 1 exp
2

L L
L
θ

−
θ θ

⎛ ⎞ ⎧ ⎫⎡ ⎤Γ = − +⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎩ ⎭
 (12) 

where L is the characteristic length, which is generally problem- 
dependent. For a shallow foundation, the characteristic length 
may be approximately estimated as the sum of the embedment 
depth and the foundation width, L = D + B (Cherubini 2000). 

To consider the effect of spatial variability in the reliability- 
based robust design, the scale of fluctuation θ may be treated as 
an additional noise factor, and accordingly the statistical charac-
terization of the uncertainty of this noise factor is included in the 
RGD approach (Fig. 4). The procedure to derive the Pareto Front 
is the same as presented previously. It is noted, however, that the 
standard deviation of φ′ used in reliability analysis is automati-
cally reduced to account for the spatial averaging effect through 
Eq. (11).  

Figure 12 shows the feasibility robustness index ββ for all 
designs on the derived Pareto Front that considers the effect of 
spatial variability. As a reference, the data from Fig. 11 (in which 
the effect of spatial variability is not considered) are also plotted 
in Fig. 12. It can be observed from Fig. 12 that for the same de-
sign (associated with a “unique” cost), the feasibility robustness 
index (ββ) considering spatial variability is higher than that 
without considering spatial variability. At a given cost, the per-
cent difference in feasibility robustness caused by the effect of 
spatial variability is more profound in the lower cost range. As 
the cost increases, the effect of spatial variability becomes less 
significant, especially at the higher cost range.   

The least cost designs of this shallow foundation at different 
feasibility robustness levels considering spatial variability effect 
are listed in Table 9. Compared to the results shown in Table 8, 
at the same feasibility robustness level the design considering 
spatial variability costs less than that without considering spatial 
variability. Thus, for the example shallow foundation studied, the 
design that achieves the same target feasibility robustness tends 
to be slightly over-designed (at a slightly higher cost) if spatial 
variability is not considered. At the same cost level (which im-
plies the same design, as each point in Fig. 12 represent a unique 
design), the computed feasibility robustness is slightly lower if 
spatial variability is not considered. The implication is that the 
design that does not consider spatial variability is biased toward 
conservative (or safer) side in the shallow foundation design pre-
sented this paper. 
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Fig. 12 Comparison of cost versus feasibility robustness for all 

designs on Pareto Fronts derived with and without con-
sidering spatial variability 

Table 9 Selected final designs at various feasibility robustness 
levels considering spatial variability 

ββ P0 (%) B (m) D (m) Cost (USD)

1 84.13 1.9 1.9 1011.9 

2 97.72 2.0 2.0 1119.4 

3 99.87 2.3 1.9 1404.0 

4 99.997 2.7 2.0 1885.0 

 

10. SUMMARY AND CONCLUDING REMARKS 

This paper presents the rationale for including robustness 
explicitly in the design of a geotechnical system. Quantification 
of uncertainties in soil parameters and geotechnical models is a 
prerequisite for a reliability-based design. Due to inexactness of 
geotechnical models and lack of soil parameters data, uncertain-
ties exist in the derived statistics of model factors and soil pa-
rameters, which compromises the effectiveness of the reliability- 
based design. The proposed reliability-based robust geotechnical 
design (RGD) approach can reduce the effect of these unavoid-
able uncertainties by achieving a certain level of design robust-
ness, in addition to meeting safety and cost requirements.  

When multiple design objectives (including safety, cost, and 
robustness) are imposed, a single best design often does not exist. 
In fact, an optimization with multiple design objectives usually 
leads to a Pareto Front, which is a set of optimal designs that are 
superior to all other designs in the design space, but within the 
set, no design is dominated by any other designs. By applying the 
proposed RGD methodology implemented in a multi-objective 
optimization framework, a Pareto Front is derived, which de-
scribes a trade-off relationship between cost and robustness at a 
given safety (reliability) level. The derived Pareto Front and the 
associated feasibility robustness index enable the engineer to 
make an informed design decision. 

It should be noted that RGD is not a design method to com-
pete with the traditional design methods; rather, it is a comple-
mentary design strategy to both reliability-based and factor of 
safety-based design methods. The proposed RGD methodology 
has been illustrated in this paper with an example of spread 
foundation design. The significance of this methodology has 
been elaborated and demonstrated.  

This paper represents the first step in developing the RGD 
methodology. The methodology is being adapted and refined at 
Clemson University in an ongoing research project. Further 
investigations by interested third parties are also encouraged to 
advance this design methodology.  
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