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ABSTRACT 

In this paper a new elasto-plastic material model based on Drucker-Prager plasticity is developed by combining yield and 
plastic potential functions into a working elasto-plastic model. The dilation slope is derived as a function of the angle of internal 
friction of the soil and it is considered as a constant parameter of the plasticity model. This assumption is proposed in order to 
make the material hardening dependent on the angle of friction. This model was implemented into the finite element program 
OpenSees. A fully coupled dynamic numerical modeling is implemented to predict the dynamic response of saturated soil which 
is modeled as a two-phase material based on the numerical framework of u-p formulation (u is the displacement of the soil skele-
ton and p is pore pressure). The first problem represents a homogeneous layer of a saturated natural soil deposit over impermeable 
bedrock. The dynamic response of this layer showed that the path of the displacement amplitude is varying at each period till 
reaching to steady state. This behavior is due to irrecoverable (plastic) strain which has occurred in the solid particles of the soil.  
The second problem studies the dynamic response of an elastic strip footing on saturated soil. It was found that at low viscous 
coupling (high permeability), the peak of the amplitude of excess pore water pressure decreases at each cycle due to the relatively 
little dissipation of the water. In contrast, at high viscous coupling (low permeability), the excess pore water pressure builds up to 
the same peak value, and the amplitude of pore pressure is larger than that at low viscous coupling. 
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1. INTRODUCTION 
Soil is not a linear material in which the relations between 

stress and strain are much more complicated than the simple 
linearly elastic behavior. Therefore, in order to represent geo-
technical problems realistically, some forms of nonlinear relation 
must be used (Desai and Christian 1977). 

The majority of the currently available implementations for 
predicting coupled soil behavior are based on the u-p formulation. 
For example, Chan (1988) and Zienkiewicz et al. (1999) devel-
oped an implementation of the u-p formulation with the general-
ized theory of plasticity.      

In this study, the governing equations for the dynamic fully 
coupled u-p formulation and appropriate constitutive model are 
implemented in a developed model which can be used for the 
practical problems involving saturated soil-foundation systems. 

2. DYNAMIC BEHAVIOR OF SOILS 

In soil dynamics, concern will be on the response of soils 
and soil-structure systems to dynamic loads. Common soil dy-
namics problems include the response of machine foundations to 
dynamic loads, nondestructive testing of foundation systems and 

the response of soil deposits and earth structures to earthquake 
loads. 

Dynamic loadings may produce a wide range of deforma-
tions of soils. In the intermediate range, soil deformations vary 
from small amplitude, nearly elastic, to plastic following earth-
quakes, water waves, or severe machine-developed forces. Small 
amplitude deformations of soils are developed adjacent to foun-
dations designed to sustain many stress repetitions without per-
manent settlements (Richart 1962). 

3. TYPES OF NONLINEARITY IN THE 
ANALYSIS OF POROUS CONTINUA 

Two types of nonlinearity exist in the analysis of porous con-
tinua, namely, geometric nonlinearity and material nonlinearity.  
1. Geometric nonlinearity. 

Solid may undergo large or finite deformations; in this case 
the theory of small deformation is no longer valid (Paul 1982). 
Therefore, one must resort to the theory of large deformations 
(Jeremic 2008). 

In many applications, for example soft soils, the small de-
formation assumption is not valid and then the geometric nonlin-
earity plays a critical role in numerical analysis. Geometric 
nonlinearity is important when changes in geometry have a sig-
nificant effect on load deformation behavior. Two examples for 
geometric nonlinearity are the large movement of slopes and the 
phenomena of liquefaction (Li and Borja 2005).   
2. Material nonlinearity. 

In modeling the material nonlinear behavior of solids, plas-
ticity theory is applicable primarily to those bodies that can ex-
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perience inelastic deformations considerably greater than the 
elastic deformation. If the resulting total deformation is small 
enough, then small deformation theory can be applied in solving 
these problems. 

4. COMPUTER PROGRAM 

The computer oriented finite element method has become 
one of the most powerful tools in the analyses of engineering 
problems. In this paper, the finite element method is used to ana-
lyze simple problems in time domain employing the computer 
program Open System for Earthquake Engineering Simulation 
(OpenSees). This program was originally produced by University 
of California.  

One of the most flexible, as well as unique, features of 
OpenSees is the ability to select an analysis procedure that is best 
for the problem, which is important for tracking structural be-
havior in the nonlinear range. The solution procedure can be 
modified during the analysis, allowing for an optimal strategy, 
depending on convergence criteria. Static and dynamic analysis 
capabilities are available along with various methods for repre-
senting constraints. The analysis procedures are developed to be 
robust and scalable to large problem sizes. Post-processing is 
handled in OpenSees by defining recorders of response quantities 
of interest. OpenSees is a finite element application for which 
users specify a model and conduct an analysis in OpenSees using 
a Tool Command Language (TCL) script. 

TCL is an interpreted high-level programming language to 
be easily understandable and easily customizable (Welch et al. 
2003). The TCL scripting language was chosen to support the 
OpenSees commands, which are used to define the problem ge-
ometry, loading, formulation and solution. These commands are 
one-line commands which have specific tasks. The TCL lan-
guage provides useful programming tools, such as variables 
manipulation, mathematical-expression evaluation and control 
structures. 

TCL is a string-based scripting language which allows the 
following: 
 1. Variables and variable substitution 
 2. Mathematical-expression evaluation 
 3. Basic control structures (if, while, for, foreach) 
 4. Procedures 

The program is implemented in the C++ programming lan-
guage through an open-source development process. For a finite 
element application, to specify a model and conduct analysis the 
TCL script is used.  

The interpreter is an extension of the TCL scripting lan-
guage. The OpenSees interpreter adds commands to TCL for 
finite element analysis. Each of these commands is associated 
with a C++ procedure that is provided. It is this procedure that is 
called upon by the interpreter to parse the command. For Open-
Sees the added commands to TCL for finite element analysis are: 
 1. Modeling: create nodes, elements, loads and constraints 
 2. Analysis: specify the analysis procedure 
 3. Output specification: specify what it is monitor during the 

analysis 
OpenSees is an object-oriented framework under construc-

tion for finite element analysis. A key feature of OpenSees is the 

interchangeability of components and the ability to integrate ex-
isting libraries and new components into the framework (Maz-
zoni et al. 2007). 

The program is comprised of a set of modules to perform 
creation of the finite element model, specification of an analysis 
procedure, selection of quantities to be monitored during the 
analysis, and the output results. In each finite element analysis, 
an analyst constructs four main types of objects, as shown in Fig. 
1. 

5. DRUCKER-PRAGER PLASTICITY MODEL 
FOR SOIL 

The Drucker-Prager model is an incremental plasticity the-
ory recognizing the soil as a work hardening material. In this 
model, the stress at which plastic deformation occurs can be de-
termined from the yield criterion (Owen and Hinton 1980). The 
function of the yield surface for the model can be expressed by: 

1 2f I J= α + − κ   (1) 

where: I1 = first stress invariant of the stress tensor, and 
J2 = second invariant of the deviator stress tensor. 

The material coefficients α and κ  may be not directly ob-
tained from experiments. They are functions of Mohr-Coulomb 
parameters, the angle of internal friction (φ) and cohesion (c) 
which can be determined by experiments. 

2 sin
3(3 sin )

φ
α =

− φ
  (2a) 

6 cos
3(3 sin )

cφ
κ =

− φ
  (2b) 

For cohesionless material, κ = 0, the yield surface becomes: 

1 2f I J= α +   (3) 

The incremental change in the yield function due to an incre-
mental stress change is (Owen and Hinton 1980): 

ij

fdf ∂
=

∂σ
  (4) 

Then if: 
df < 0 elastic behavior occurs and the stress point returns in-

side the yield surface, 
df = 0 plastic behavior for perfectly plastic material and the 

stress point remains on the yield surface, and 
df > 0 plastic behavior for a strain hardening material and the 

stress point remains on the expanding yield surface. 
After initial yielding, the material behavior will be partly 

elastic. During any increment of stress, the changes of strain are 
assumed to be divisible into static and plastic components (Yu 
2006), so that: 

e P
ij ij ijd d dε = ε + ε   (5) 
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Fig. 1  Main objects in an analysis by the OpenSees program 

where dεij, e
ijdε  and P

ijdε  are the total, elastic and plastic strain 
increments, respectively.  

Before the onset of plastic yielding, the elastic strain incre-
ment is related to the stress increment by: 

  
e

ij ijkl ijd D dε = ε   (6) 

where Dijkl is the tensor of elastic constants for an linear elastic 
isotropic material, such as soil, has the form: 

   
2

2 (1 ) 1 2ijkl ij kl ik jl il jk
ED

⎛ ⎞υ
= δ δ + δ δ + δ δ⎜ ⎟+ υ − υ⎝ ⎠

 (7) 

where: E = modulus of elasticity, 
υ = Poisson’s ratio, and 
δij = Kronecker’s delta, δij = 1 when i = j 

and δij = 0  when i ≠ j.   
At yielding, the incremental plastic strain can be determined 

from the flow rule which governs the plastic flow after yielding 
(Yu 2006), so that: 

P
ij

ij

Qd d ∂
ε = λ

∂ σ
  (8) 

where dλ is a proportionality constant and Q is the plastic poten-
tial which is given by: 

1 2Q d I J= + − κ   (9) 

where d = dilation slope. 
The Drucker-Prager relations are used as yield criterion in 

which the associated flow rule implies very large extensional 
volumetric plastic strains. These are not observed experimentally 
for soil (Desai and Christian 1977). 

The non-associated flow rules used in soils rely on the po-
tential surface which is different from the yield surface. The po-
tential surface must specify the dilation slope as (Jeremic 2008): 

2sin
3(3 sin )

d α
=

− α
  (10) 

The implementation into OpenSees finite element platform 
allows use of existing and development of new elasto-plastic 
material models by simply combining yield functions and plastic 
potential functions into a working elastio-plastic model. In this 
study, the dilation slope is derived as a function of the angle of 
internal friction of the soil and it is considered as a constant pa-
rameter of the plasticity model. This assumption is proposed in 
this work in order to make the material hardening dependent on 
the angle of friction. To do so, substituting Eq. (2a) in Eq. (10) 
and rearranging yield: 

2sinsin
2 3(3 sin )

2sin3 3 sin
3(3 sin )

Q

φ⎡ ⎤
⎢ ⎥− φ⎢ ⎥=

φ⎢ ⎥−⎢ ⎥− φ⎣ ⎦

 (11) 

6. GENERAL FRAMEWORK FOR SIMULATION 
OF THE SATURATED POROUS MEDIA 

There are several different approaches to determine the be-
havior of a two-phase medium. Generally, they can be classified 
as uncoupled and coupled analysis. In the uncoupled analysis, the 
response of saturated soil are computed without considering the 
effect of soil-water interaction, and then the pore water pressure 
is calculated separately by means of a pore pressure generation 
model. In the coupled analysis, all unknowns are computed si-
multaneously at each time step. These are used for more realistic 
representation of the physical phenomena than those provided by 
uncoupled. 

In this paper, a fully coupled dynamic numerical modeling is 
implemened to predict the dynamic response of saturated soil. 
The saturated soil is modeled as a two-phase material based on 
the numerical framework of u-p formulation. In this formulation, 
the displacement of the soil skeleton (u) and pore pressure (p) are 
the primary unknowns. In addition, this formulation neglects the 
acceleration of the pore fluid, and neglects the compressibility of 
the fluid. Using the finite element method for spatial discretiza-
tion, the u-p formulation is as follows: 

 
 0T u

V
M u B dV Q p f′+ σ − − =∫  (12) 

 0T pH p Q u S p f+ + − =  (13) 

where: 
 M is the mass matrix, 
 B is the nodal strain-displacement matrix, 
 T is the transpose of a matrix, 
 σ′ is the effective stress, 
 Q is the coupling matrix, 
 f is the vector of applied forces,  
 H is the permeability matrix, and 
 S is the compressibility matrix. 

The effective stress σ′ can be determined by the soil consti-
tutive model. To complete the numerical solution, it is necessary 
to integrate the above equations in time. Here, the original New-
mark method is used. 

The generalized Newmark method can be considered as a 
generalization of Newmark’s two parameter time integration 
scheme. In all time stepping schemes, the value xn can either be 
the displacement or the pore water pressure and its derivatives 

nX  and nX  at time tn with the values of Xn+1, 1nX +  and 
1nX +  which are valid at time tn+ Δt and are the unknowns. 

7. SOIL-PORE FLUID INTERACTION 

Frequently two or more physical systems interact with each 
other, with the independent solution of any system being impos-
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sible without simultaneous solution of the others, such systems 
are known coupled. The behavior of soils is strongly influenced 
by the pressures of the fluid present in the pores of the material 
(Zienkiewicz and Taylor 2005). 

Pore fluid-solid interaction is important in material like 
saturated soil under dynamic conditions. This material when 
saturated with fluid can be treated as two-phase material, i.e. the 
solid skeleton and the fluid in the voids (Paul 1982).  

8. LINEAR ELASTIC DYNAMIC RESPONSE OF 
ONE-DIMENSIONAL SOIL COLUMN 

To show the validation of the u-p formulation, the dynamic 
behavior of a finite saturated half space that is subjected to sinu-
soidal loading function of the form F(t) = Fo sin (ωt) is studied. 

The problem represents a homogeneous layer of a saturated 
natural soil deposit over impermeable bedrock. For the finite 
element discretization, an elastic soil column is considered to 
represent the saturated soil. This model is implemented for the 
three-dimensional description of the stress-strain response of the 
soil. Therefore, an element of 8-node hexahedral linear 
isoparametric is used to model the soil column as shown in Fig. 2. 
Each element node has four degrees of freedom; the first, second 
and third degrees of freedom are for solid displacements (u) 
while the fourth degree of freedom is for fluid pressure (p). 

To achieve a one-dimensional analysis, the boundary condi-
tions are applied so that the bottom of the soil column is fixed in 
solid displacement while the top surface of the soil is set to be 
free in solid displacement (pore pressure p = 0). All the interme-
diate nodes are fixed in x-y plane, but the vertical movement is 
allowed.  

A time step (Δt = 0.1 sec) is used in the Newmark method to 
integrate the aforementioned Eqs. (12) and (13) in time. A uni-
form vertical pressure of ±100 kPa is applied on the top surface 
of the soil column, with loading period of 100 seconds. The 
boundary conditions are applied in a manner that the bottom of 
the soil column is fixed in solid displacement while the top sur-
face of the soil is set to be free in solid displacement and there-
fore the pore water pressures at the free surface are taken as zero 
(Paul 1982). 

The material parameters for the half space elastic response 
are shown in Table 1. To cure the artificial oscillation, the nu-
merical damping is introduced into the analysis by using          
γ = 0.6 and β = 0.3025 in the Newmark algorithm (Jeremic 2006). 
The results of the solution from the present study are shown in 
Figs. 3, 4 and 5. It can be noted that when the solid part moves 
upward (see Figs. 4 and 5), the pore water pressure displays 
negative values (pore fluid suction) as shown in Fig. 5.  

The larger displacement of the solid skeleton occurs when it 
is closer to the surface. This phenomenon can be explained by 
considering elastic recovery of the solid skeleton. 

Jeremic (2006) gave the numerical solution of this problem 
by the u-p-U formulation as shown in Fig. 6 to simulate the solid 
skeleton and pore water pressure responses. This formulation 
allows, among other features, for fluid acceleration to be taken 
into account. The symbol “U” refers to the relative displacement 
of water (fluid) with respect to soil solids. By comparing the re-
sults of the present study with those given by Jeremic (2006), 
good agreement is shown. The differences in solid displacement 

 

Fig. 2 Finite element idealization of the soil deposits subjected 
to vertical harmonic vibration 

 
Fig. 3 The predicted elastic response of solid particles, 

displacement - time history at surface 

and pore water pressure can be attributed to the inclusion of dila-
tion as a function of the angle of internal friction of the soil and 
considered as a constant parameter of the plasticity model. 

Max. Amplitude = 0.724 mm
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Fig. 4 The predicted elastic response of solid particles, 

displacement-time history at 2 m and 4 m depth 

 
Fig. 5 The predicted elastic response of pore water 

pressure-time history at 2 m and 4 m depth 

Table 1 Material parameters of the soil for elastic response 
(from Jeremic 2006) 

Parameters Value 

Poisson’s ratio υ 0.20 

Modulus of elasticity 
(kN/m2) E 1.2 × 106 

Mass density of soil 
(kg/m3) ρ 2.0 × 103 

Mass density of fluid 
(kg/m3) ρf 1.0 × 103 

Bulk modulus of fluid 
(kN/m2) Κf 1.0 × 1020 

Coefficient of permeability 
(m/sec) k 3.6 × 10−4 

 
Fig. 6 The elastic response of solid particle displacement and 

pore pressure with time histories (after Jeremic 2006) 

9. ELASTO-PLASTIC DYNAMIC RESPONSE OF 
ONE-DIMENSIONAL MODEL 

As noticed above, deformation may be classed as recover-
able or unrecoverable. The saturated soil column as shown in Fig. 
2 is reanalyzed for the same dynamic load and time step. The 
solid skeleton of the soil is represented by the Drucker-Prager 
plasticity model with non-associative flow rule as developed in 
this paper. The elastic properties of the soil are shown in Table 1. 
Accordingly, the recommended angle of internal friction is 35ο 
and thus α = 0.273 and d = 1.84 × 10−3.   

The dynamic response of the soil column is shown in Figs. 7, 
8 and 9. It can be shown that the path of the amplitude of the 
displacement is varying at each period till reaching a steady state 
(Figs. 7 and 8). This behavior is due to irrecoverable (plastic) 
strain which has occurred in the solid particles of the soil. In ad-
dition, the fluid phase response is linear elastic (Fig. 9); this veri-
fies that the plastic behavior is essentially independent of hydro-
static pressure (Owen and Hinton 1980). 

This study indicates that the dynamic response of the solid 
displacement and pore pressure from the elasto-plastic behavior 
is larger than that assuming elastic behavior of the soil. 

10. TWO-DIMENSIONAL DYNAMIC ANALYSIS 
OF FOUNDATIONS ON SATURATED SOIL 

In this section, the proposed numerical model is imple-
mented for the analysis of soil-structure interaction. The soil is 
modeled as an elasto-plastic solid where the Drucker-Prager 
plasticity model with a non-associative flow rule is adopted to 
include the effects of the soil nonlinearity. Due to the fact that the 
analysis of very large models take too long time to run on a sin-
gle computer processer, a two-dimensional quasi-plane-strain is 
proposed as a simplification to the full three-dimensional model. 

To study the dynamic response of an elastic strip footing, a 
soil-foundation system has to be considered. The geometry of the 
problem consists of a concrete strip footing of width B = 2 m and 
thickness of 0.25 m resting on a saturated sand. The soil-   
foundation system is subjected to a sinusoidal loading applied on 

Depth = 4 m Max. Amplitude = 0.607 mm
Depth = 2 m Max. Amplitude = 0.574 mm
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Fig. 7 The predicted elasto-plastic response of solid partials 

displacement with time histories 

 
Fig. 8 The predicted elasto-plastic response of solid partials  

displacement time histories at 2 m and 4 m depth 

the top surface of the footing.  The amplitude of the pressure is 
±10.0 kPa and the period of the loading is 10 sec. The soil me-
dium is discretized using brick elements which have eight nodes 
for the solid phase, with three degrees of freedom in the x, y and z 
direction at each node, and eight nodes for the fluid phase as 
shown in Fig. 10.     

The soil properties are considered to be uniform throughout 
the depth of the layer which is a common assumption in soil dy-
namics, the material properties of the saturated sand are shown in 
Table 2. Assuming that the modulus of elasticity of the soil Es is 
constant and the material stiffness of the foundation Ef maintains 
the ratio of Es / Ef which is 1/100. The above sentence refers to 
the initial values of the modulus of elasticity of the soil Es which 
will be changed with stress level during the analysis. The bulk 
density and Poisson’s ratio for the material of the footing are 2.4 
ton/m3 and 0.20, respectively. 

 
Fig. 9 The predicted elasto-plastic response of pore pressure 

time histories at 2 m and 4 m depth 

 
Fig. 10  Two-dimensional quasi-plane-strain model 

Table 2 Material parameters of the saturated sand (after Chan 
and Ou 2008) 

Parameters Value 

Poisson’s ratio υ 0.31 

Modulus of elasticity 
(kPa) E 1.95 × 105 

Mass density of soil particles  
(kg/m3) ρs 2670 

Bulk modulus of soil particles  
(kN/m2) Κs 1.0 × 1017 

Mass density of fluid 
(kg/m3) ρf 1000 

Bulk modulus of fluid 
(kN/m2) Κf 1.0 × 106 

Porosity n 0.398 

Angle of internal friction 
(degree) φ 35 

Max. Amplitude = 2.291 mm

Depth = 4 m Max. Amplitude = 1.935 mm
Depth = 2 m Max. Amplitude = 1.632 mm

Depth = 4 m Max. Amplitude = 61.266 kPa
Depth = 2 m Max. Amplitude = 34.145 kPa
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The boundary conditions are applied so that the nodes lying 
in a plane parallel to the Y-Z plane at X = 0.0 m and 16.0 m are 
restrained in X-direction. For nodes lying in the planes parallel to 
the X-Z plane are restrained in Y-direction. A fully restrain is 
considered for all nodes in X-Y plane at Z = 0.0 m. 

Two different coefficients of permeability (i.e. k = 1 × 10−3 
and k = 1 × 10−5 m/sec) are selected to show the effects of viscous 
coupling between the solid and fluid parts. The responses of the 
foundation due to sinusoidal loading at different permeability are 
presented in Figs. 11, 12, 13 and 14. 

From Figs. 11 and 13 it can be found that the permanent de-
formation in the soil occurs due to the plastic strain in the solid 
skeleton. Figures 12 and 14 show that at low viscous coupling  
(k = 1 × 10−3 m/sec), the peak of the amplitude of excess pore 
water pressure decreases at each cycle due to the relatively little 
dissipation of the water. In contrast, at high viscous coupling (k = 
1 × 10−5 m/sec), the excess pore water pressure builds up to the 
same peak value, and the amplitude of pore pressure is larger 
than that at low viscous coupling (k = 1 × 10−3 m/sec).    

 
 

 
 

 
Fig. 11 Displacement response of the strip footing at point A 

(k = 1 × 10−3 m/sec) 

 

Fig. 12 Excess pore water pressure under the strip footing at 
point A (k = 1 × 10−3 m/sec) 

 

Fig. 13 Displacement response of the strip footing at point A (k = 
1 × 10−5 m/sec) 

 

Fig. 14 Excess pore water pressure under the strip footing at 
point A (k = 1 × 10−5 m/sec) 
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11. CONCLUSIONS 

1. In this work, a new elasto-plastic material model based on 
Drucker-Prager plasticity is developed by simply combining 
yield functions and plastic potential functions into a working 
elastio-plastic model. The dilation slope is derived as a func-
tion of the angle of internal friction of the soil and it is con-
sidered as a constant parameter of the plasticity model. This 
assumption is proposed in order to make the material harden-
ing dependent on the angle of friction. In this work a new 
elasto-plastic material model based on Drucker-Prager plas-
ticity is developed by simply combining yield and plastic po-
tential functions into a working elastio-plastic model. 

2. The dynamic response of a homogeneous layer of a saturated 
natural soil deposit over impermeable bedrock showed that 
the path of the displacement amplitude is varying at each pe-
riod till reaching to steady state. In addition, the fluid phase 
response is linear elastic. The dynamic response of the solid 
displacement and pore pressure from the elasto-plastic be-
havior is larger than that assuming elastic behavior of the soil. 

3. At low viscous coupling, the peak of the amplitude of excess 
pore water pressure decreases at each cycle due to the rela-
tively little dissipation of the water. In contrast, at high 
viscous coupling, the excess pore water pressure builds up to 
the same peak value, and the amplitude of pore pressure is 
larger than that at low viscous coupling.    
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