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ABSTRACT 

This paper presents a three-dimensional numerical model for the prediction of free field vibrations due to the vibratory and 
impact of pile driving. A new coupling methodology, finite element method (FEM) with scaled boundary finite element method 
(SBFEM), has been adopted to simulate the pile driving process into a layered ground. With this numerical model, the reflection 
energy can be absorbed on the near-/far-field interface without accuracy reduction, while simulation time and amount are reduced. 
The results indicate that the ground surface vibration during piling will not be affected while the receiver is located away from 
source over than five times of pile diameter with vibration frequency fixed at 20 Hz. 
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1. INTRODUCTION 
Ground surface vibrations are generated either by human ac-

tivities, traffic loading, construction induced, etc. The common 
man-made vibrations are caused by pile driving, blasting, etc. 
The analyzed pile is a large displacement driving pile, which is 
fabricated prior to installation and then driven into the ground by 
impact or vibratory hammers. Frequently, vibrations produced 
during construction operations became a concern since they can 
disturb people and cause some damage on adjacent structures, 
where the induced vibrations may cause cracks in the walls or in 
the facade. During the pile driving, the energy transmitted 
through the soil is very high and causes large soil deformations 
and settlements in the near-field. In the far field, reported data 
show that the induced vibrations cause deformations in the elastic 
range (Kim and Lee 2002). So, the deformation at a certain dis-
tance to the pile can be assumed to have a linear elastic constitu-
tive behavior in the unbounded soil. The approach has been used 
in the finite element method (FEM) simulations of To and Smith 
(1988), and Mabsout (1999). With these FEM analyses, the ef-
fects of different driving methods on the surrounding soil are able 
to be predicted. Nevertheless, FEM models can perform well in 
non-homogeneous and anisotropic materials for non-linear 
material behaviour and complex geometry of a structure. 
However, the dynamic response of unbounded (or semi-infinite) 
medium model can not be simulated for a vast spatial 
discretisation. As common transmitting boundaries, like simple 
spring-dashpots, are generally only approximate representations 
of the unbounded soil located on the artificial boundaries’ 
exterior, certain reflections will occur. Obviously, FEM cannot 
satisfy the boundary conditions at infinity exactly. The spatial 

discretisation is terminated on an artificial boundary where the 
truncated domain outside the boundary up to infinity can only be 
represented approximately. The important factors affecting the 
accuracy of the modelled response of a structure by FEM are the 
type of the transmitting boundary and its distance from the 
structure. In other words, it is to be expected that the farther away 
the artificial boundary is placed, the more accurate the results 
become. 

The use of infinite elements (IE) to model continua has been 
developed particularly by Bettess (1992). This method is very 
effective in preventing spurious reflection when a single wave 
type at a defined transmission velocity strikes the artificial 
boundary. However it is less effective when the wave pattern 
contains components of different velocities. Further difficulties 
may arise if static forces such as self-weight are applied prior to 
the dynamic analysis (Ramshaw and Selby 2003). The scaled 
boundary finite element method (SBFEM) was developed for 
bounded and unbounded domains over the past few years 
addressing elastodynamics and diffusion (Wolf 2003). Main 
application of the SBFEM is the analysis of wave propagation 
problems in an elastic half-space, occurring in soil- structure 
interaction simulations in time and frequency domain. SBFEM 
performs well in calculating the dynamic stiffness matrix for both 
homogeneous and non-homogeneous discretised mediums, which 
extend to infinity and it does not require a fundamental solution 
as the boundary element method (BEM). Coupling the SBFEM to 
the FEM has been proved to reduce the computational effort for 
long simulation times dramatically, while the accuracy of the 
model is not affected (Lehmann 2005).  

As the focus is on the response in the far field, where de-
formations are relatively small, a linear elastic constitutive be-
havior is assumed for the soil. The free field vibrations are cal-
culated by means of a coupled FE-SBFEM model using a sub-
domain formulation. The vibratory pile driving is modeled, 
where the vibration frequency is fixed at 20 Hz for different 
penetration depths. Herein, the pile and the soil (near-field) mod-
eled by the FEM and the unbounded soil (far-field) by SBFEM. 
The ground surface vibrations are observed at several distances 
from pile centre, 2D, 5D and 10D, where D is pile diameter.  
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2. COUPLED FEM/SBFEM 

The SBFEM (Wolf 2003) based on the FE formulation and 
satisfies the radiation condition at infinity while reducing the 
spatial dimension by one. The solution is analytical in the radial 
direction while the solution in the circumferential direction is 
approximative in the sense while it converges to the exact 
solution as the number of degrees of freedom increases. As 
discussed above, the FEM is chosen to map the near-field while 
the SBFEM is utilized to absorb the reflection energy at the 
artificial boundary. Such a hybrid method has some unique 
features: 
 1. Reduction of one spatial dimension without requiring a 

fundamental solution. 
 2. No discretisation of free and fixed boundaries and interfaces 

between different materials in the sound domain. 
 3. Influence of the infinite far-field could be stored in the form 

of influence matrices for further simulations (different 
near-field geometries or load cases). 

 4. Straightforward incorporating in existing FEM codes and 
concise coupling with FEM. 

2.1 Governing Equation 

A summary of the governing equations of linear theory to 
the time domain is given. The Hooke’s law with the vector of 
strain states can simply be displayed as: 

=σ Dε   (1) 

where σT = [σx σy σz τx τy τz], is the stress vector and 
εT = [εx εy εz 2εxy 2εxz 2εyz], is the vector containing the 

(compressing) strain states. 
D is the elasticity matrix which may be stated for isotropic 

or anisotropic material. 
For linear theory, the strain tensor is defined by the strain- 

displacement relationship 

=ε Lu   (2) 

With the differential operator L given in its transposed form 
by: 
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Applying this operator (Eq. (3)) on σ, the equation of mo-
tion in the time domain is given by: 

( ) ( ) ( )  ,T t t t+ − ρ =L σ b u 0   (4) 

where ρ means the material density; the stresses σ(t), body forces 
b(t), and displacements ( )tu  are time-dependent. 

2.2 Hybrid FEM/SBFEM Scheme 

Equation (4) represents the equation of motion in the time 
domain for a general case. The analyzed domain can be divided 
into two parts: Near- / far-field as shown in Fig. 1. A time-  
dependent interaction force vector rb(t) on the interface between 
near-field and far-field is introduced. Then introducing the γ- 
parameter of the Hilber-Hughes-Taylor implicit time integration 
scheme (Hilber et al. 1997), the equation of motion can be writ-
ten as (Crouch and Bennet 2000): 
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where the mass matrix M, the stiffness matrix K, and the node 
value vectors of the displacements u and accelerations u , re-
spectively, are subdivided corresponding to the location of the 
nodes, i.e., subscript b denotes the nodes on the soil-structure 
interface and the subscript s the remaining nodes of the structure. 
On the right hand side of Eq. (5) P(t) is the vector of external 
forces and rb(t) represents the interaction forces between the 
near- and far-field. When the interaction force vector rb(t) is de-
termined, the dynamic response of the structure can be obtained 
from Eq. (5) by using direct integration schemes, such as the 
Hilber-Hughes-Taylor implicit time integration scheme.  

In the substructure method, the interaction forces on the 
near-field/far-field interface are given by the convolution integral 

 
 0( ) ( ) ( ) t

b bt t d∞= − τ τ τ∫r M u  (6) 

where M∞(t) is the acceleration unit-impulse response matrix of 
the soil at a node which will subsequently lie on the near- 
field/far-field interface. The calculation of convolution integral 
(6) is computational expensive for long simulation times. Hence, 
a reduction of non-locality in time, as suggested by Lehmann 
(2004, 2005) is used. 

The derivation of the SBFEM and its solution procedures are 
discussed in Wolf and Song (2000). In the scaled boundary finite 
element method, a so-called scaling centre is chosen in a zone from 
which the total boundary, other than the straight free surface pass-
ing through the scaling centre, must be visible as shown in Fig. 1. 
Only the boundary visible from the scaling centre is discretized. 
The coordinates of the nodes of an element in the three-      
dimensional Cartesian coordinate system are arranged in {x}{y}{z} 
(Fig. 2). The geometry of the near-/far field interface is described 
by a finite element discretization with local coordinates η,ζ on the 
boundary (Wolf and Song 1996). The governing differential equa-
tions are transformed to this coordinate system. Two dimensional 
finite elements represent the far-field/near-field interface of a 
three-dimensional problem, while a radial coordinate ξ contains the 
scaling factor. The axes η and ζ lay in the circumferential direc-
tions (on the boundary). As shown in Fig. 2 for an unbounded 
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Fig. 1 Discretisation scheme of soil-structure-interaction 

system (Lehmann 2005) 

 
Fig. 2 Finite element and 3D coordinate system of scaled 

boundary transformation (Lehmann 2005) 

medium, the radial coordinate ξ points from the boundary towards 
infinity where the boundary condition at infinity (radiation condi-
tion) can be incorporated in the analytical solution. The change of 
coordinates from Cartesian coordinate system to the scaled bound-
ary coordinates ξ, η and ζ is called the scaled boundary transfor-
mation. It means that the governing differential equations can be 
solves in the radial direction analytically and in the circumferential 
directions numerically. Hence, the method reduces the governing 
partial differential equations (PDE) to a set of ordinary differential 
equations (ODE). This is achieved by introducing finite element 
shape functions in the circumferential direction and solving the 
ODE thus formed analytically in the normalized radial direction. 
More details about boundary discretization and dynamic-stiffness 
matrix can be found in Wolf and Song (1996); Wolf (2003).  

Initially, to perform a scaled boundary formulation, one has 
to discretise the boundary with finite elements. Applying the 
scaled boundary transformation and Galerkin’s weighted residual 
method, the governing partial differential equations are 
reformulated as the SBFE equation in displacement (solids), with 
the radial coordinate as independent variable. For a time domain 
analysis a further transformation is mandatory. A final numerical 
discretisation allows to use the computer-based analyses.  

3. NUMERICAL MODEL 

The free field vibrations due to driving of a concrete pile in 
a semi-infinite medium are investigated. The majority of modern 
pile vibrators perform at frequencies, ranging typically between 

20 to 40 Hz. Modern vibrators can generate a force up to    
4000 kN. As the responses of ground surface vibration amplitude 
are relatively small, a linear elastic constitutive behavior is as-
sumed for the soil. A vibratory pile driver operates by continu-
ously shaking the pile at a fixed frequency to vibrate the pile into 
the ground. In this paper, the pile and its surrounding soil is 
modeled to simulate the pile driving process with a fixed vibra-
tion frequency at 20 Hz. The pile driving force will generate a 
sinusoidal force with the amplitude of 1000 kN and period of 0.1 
second during pile installation. The pile has a length 20 m, a di-
ameter 0.6 m, a Young’s Modulus Ep = 4000 MPa, a Poisson’s 
ratio vp = 0.2, and a density ρp = 2400 kg/m3. The pile and the 
soil are modeled using 8-node brick elements; with a linear elas-
tic material behaviour. In this model, the total node number is 
3929 and the element number is 3696. The minimum element 
length is 0.3 m, maximum element is 15.3 m and the maximum 
distance from pile centre to the near-/far-field interface is 12 
times pile diameter (13D, where D is the pile diameter). However, 
to avoid the unknown influence by the interface of the near-/far- 
field, the maximum discussed distance is 10D, which far from the 
pile centre. A time step Δt = 0.002 for 12.0 seconds are used for 
the time-domain simulation. 

The subsoil conditions are based on the subsoil exploration 
(up to 20.0 m depth) drilled in a construction site (Ni and Chuang 
2001). The soil strata are defined as 4 layers and bedrock. Their 
properties are soft clay and loose to medium dense sands as 
shown in Table 1. Poisson’s ratio (vs) of all soil layers are as-
sumed to be 0.3. The bottom soil (below 20 m) is the bedrock. In 
the numerical model, the bedrock is considered as fixed boundary 
conditions at the bottom of the FE domain. 

4. RESULTS AND DISCUSSIONS 

4.1 Investigation of Several Penetration Depths 

Ground surface vibrations due to operating frequency of 
piling fp = 20 Hz are considered during processing. The 
vibrations of the ground surface are discussed in the distance 
range d = 1D − 10D to the pile centre. The results of various pile 
driving depths are shown in Fig. 3. In Fig. 3(a), the pile is 
installed in the subsoil at the depth 1.3 m. The maximum 
amplitude (3.5 × 10−7 m at t = 0.0s) occurs at the position 2D, 
then decays as time greater than 1.3s. The vibration amplitudes 

Table 1  Soil property parameters in the numerical model 

Depth 
(m) 

Soil 
Classification 

Submerged 
Unit Weight 
γ’ (kN/m3) 

Young’s 
Modulus 

Es (kN/m2) 

0 ~ 2.6 Soil 1: CL 8.61 20000 

2.6 ~ 7.4 Soil 2: SM 10.39 55000 

7.4 ~ 12.0 Soil 3: CL 9.27 20000 

12.0 ~ 20.0 Soil 4: SM 9.29 65000 

> 20 Bedrock − − 
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(a) Pile driving depth at 1.3 m 

 
(b) Pile driving depth at 5 m 

 
(c) Pile driving depth at 9.7 m   

 
(d) Pile driving depth at 16.0 m 

Fig. 3 The time history curve of vertical displacement on the 
ground surface with pile driving depth at  (a) 1.3 m (b) 
5.0 m (c) 9.7 m (d) 16.0 m 

are between −1.3 × 10−7 to 0.2 × 10−7 m between t = 2 to 12s. As 
to d = 5D, it is an analogous-harmonic vibration, the amplitude is 
between −2 × 10−7 and 2 × 10−7 m, and without distinctive decay 
tendency in the curve until t = 12s with tremors. As regards to   
d = 10D, the vibration amplitude is smaller relatively between  
−2 × 10−8 and 2 × 10−8 m, and the curve is smoother than the 
others. Figures 3(b) to 3(d) show the results of pile driving depths 
in the 5 m, 9.7 m and 16 m, respectively. Comparing the results 
of Figs. 3(a) ~ 3(d), there is no difference in the position of peak 
amplitude of curve 2D. All the curves have higher oscillations (or 
noise) during the whole simulation time. The main reason is that 
the receiver position 2D is too close to the pile and the its 
vibration affects the ground surface vibration seriously.  

Concerning the distances 5D, the curves look similar and the 
main amplitudes are below 1.5 × 10−7 m. In addition, there is 
agreement in all curves 10D and they keep small and smooth 
vibrations during the whole time. Hence, it can be summarized 
that the different subsoil properties do not affect the vibration 
amplitude with any significance even the pile driving depth is at 
different soil layers. But the factor of d affects the vibrations a lot, 
the distance is farther and the amplitude is smaller. 

4.2 Distances from Pile Centre 

Test results of three different receivers located at 2D, 5D 
and 10D on the ground surface are discussed while the pile 
driving depth are into different soil layers. All data of ground 
surface vibration are shown in Fig. 4 to Fig. 6. Figure 4 
represents these vibrations in time history with pile installing into 
four different soil layers (i.e. Soil 1–Soil 4) with the receiver 
located at 2D. In this figure, four curves decay rapidly before t = 
12s. After t = 10s, the curves vibrate with amplitude range 
between −5 × 10−8 to 5 × 10−8 m. They almost overlap  among 
the curves for the Soil 2, 3 and 4, so no distinct characteristics 
could be identified or compared.  

In Fig. 5, the receiver is located at 5D. Obviously, it is away 
from the source and the influence is decreased. These curves are 
totally different from Fig. 4 in oscillation pattern. In Fig. 5, the 
peak occurs at about 4s with amplitude 1.0 × 10−7 m while pile 
driving into Soil 3. it is the smallest amplitude for curve for Soil 
1. Actually, there is little difference of the peak values among the 
curves for Soil 2 and 3. Obviously, the source effect is decreased. 
As regards to the receiver located at 10D, the results show in Fig. 
6. The source effect is the lowest and four curves have 
agreements in time domain. Obviously, the curve for Soil 3 
shows the largest vibration amplitude, the second one is the curve 
for Soil 4, and then curve for Soil 2. The curve for  Soil 1 shows 
the smallest vibration amplitude. Herein, it can be found that the 
peak amplitude is getting larger as the distance d is increasing. In 
addition, the soil stiffness affects the simulated result, especially 
for Soil 3. It is a softer soil layer (i.e. smaller stiffness) than both 
the upper and lower soil layers. Such soil deposits amplify the 
vibration amplitude when the receiver is getting far away from 
the source in time domain than the others.  

5. CONCLUSIONS 

A hybrid method, coupled FEM/SBFEM model, has been 
developed to predict ground vibrations due to impact pile driving. 
Using a subdomain formulation, a linear model for dynamic 
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Fig. 4 The vertical displacement on the ground surface away 
from the pile centre 2D 

 

Fig. 5 The vertical displacement on the ground surface away 
from the pile centre 5D 

 

Fig. 6 The vertical displacement on the ground surface away 
from the pile centre 10D 

soil-pile interaction has been implemented. Both pile and sur-
rounding soil (or near-field) is modeled using the finite element 
method. The soil (or far-field) is modeled as a horizontally lay-
ered elastic half space using a boundary element method. The 
characteristics of the propagating waves on the ground surface 
have been investigated. Obviously, such numerical model raises 
the efficiency of numerical simulation and it also avoids the re-
duction in accuracy by the reflection wave from the artificial 
boundary. Some results of the pile driving process can be drawn 
as below: 
 1. The factor of distance between source to the receiver affects 

the vibrations seriously. The distance is farther and the curve 
amplitude is smaller in time domain. In the model with 
layered soils, the ground surface vibration will not be 
affected when the receiver is located away from the source 
more than five times of pile diameter during piling. 

 2. The soil stiffness affects the ground surface vibration greatly 
especially when the pile driving depth is into the soft soil 
layer which is embedded between two harder layers, and 
then it will produce the maximum vibration amplitude on the 
ground surface.   
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