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RELIABILITY BASED DESIGN OF PILE FOUNDATIONS 
CONSIDERING BOTH PARAMETER AND MODEL UNCERTAINTIES 

Jie Zhang1, Limin Zhang2, and Wilson H. Tang3 

ABSTRACT 

There are two types of uncertainties in the design of large diameter bored piles, i.e., parameter uncertainty and model uncer-
tainty. This paper illustrates how model uncertainty associated with a pile capacity prediction model can be characterized, and 
describes a procedure to develop resistance factors for the design of large-diameter bored piles with explicit consideration of both 
types of uncertainties. The deterministic pile capacity model is first described. Then, the parameter uncertainty associated with the 
model is characterized. It is shown that the parameter uncertainty alone cannot explain the disparity between predicted and meas-
ured pile capacities. Thereafter, the model uncertainty associated with the prediction model is characterized using pile load test 
data. The effect of pile load tests not conducted to failure on model uncertainty characterization is discussed. Finally, based on the 
characterized parameter and model uncertainties, resistances factors are developed for practical reliability based design using the 
design point method. To comply with load factors specified for structural design, the resistance factors determined directly based 
on the design point method are scaled such that the safety of the pile foundation is not lower than the target reliability level. 

Key words: Pile foundation, reliability based design, parameter uncertainty, model uncertainty, resistance factors.

1. INTRODUCTION 
Accurate prediction of the capacity of large diameter bored 

piles is generally not easy, since both soil properties and con-
struction procedures could affect the capacity of such piles. The 
capacity of a large diameter bored pile generally consists of two 
parts, i.e., the shaft resistance and the toe resistance. As summa-
rized in Rollins et al. (2005), commonly used methods for pre-
dicting shaft and toe resistances of bored piles include standard 
penetration test (SPT) methods (e.g., Meyerhof 1976), effective 
stress methods (e.g., Reese and O’Neill 1988; O’Neill 1994), and 
soil mechanics based approaches (e.g., Kulhawy 1991). 

In general, the uncertainty involved in a design can be di-
vided into two types, i.e., the uncertainty associated with model 
input parameters and the uncertainty associated with the model 
itself. Traditionally, a global factor of safety is used to accom-
modate all sources of uncertainty in the design of bored piles. As 
the global factor of safety method cannot explicitly consider the 
level of uncertainty involved in a design, piles with the same 
global factor of safety may in fact correspond to different levels 
of risk. To achieve a consistent level of safety, probabilistic the-
ory can be used to develop resistance factors for reliability based 
design of pile foundations (e.g., Barker et al. 1991; AASHTO 
2004; Paikowsky et al. 2004).  

At present, parameter and model uncertainties are often not 
considered separately when calibrating resistance factors with 
reliability theory. One possible reason for this might be the lack 
of methods for separating these two types of uncertainties. Re-
cently, Ching et al. (2008) suggested a method to develop resis-
tance factors considering both parameter and model uncertainties 
for reliability based design of soil anchors based on Markov 
Chain Monte Carlo simulation. A general method for separating 
parameter and model uncertainties has been developed based on 
Bayes’ theorem (e.g., Zhang et al. 2009; Zhang 2009). The ob-
jectives of this paper are then to illustrate how to separate the two 
types of uncertainties involved in a pile design, and to describe a 
procedure for developing resistance factors for the design of 
large diameter bored piles with explicit consideration of both 
types of uncertainties. The structure of this paper is as follows. 
First, a deterministic model for predicting the capacity of a large 
diameter bored pile is introduced. Then, the parameter uncer-
tainty associated with the model is characterized, and the neces-
sity to characterize the model uncertainty is highlighted. There-
after, the model uncertainty associated with the pile capacity 
model is determined, and the effect of piles not loaded to failure 
on the model uncertainty characterization is studied. Finally, 
based on characterized parameter and model uncertainties, resis-
tances factors for practical reliability based design are developed. 
How to adjust the resistance factors to comply with the load fac-
tors specified in the structural codes is also described.  

2. PILE CAPACITY MODEL AND ASSOCIATED 
UNCERTAINTIES 

2.1 Deterministic Pile Capacity Model 

It is common to predict the capacity of a bored pile based on 
empirical correlations with uncorrected SPT blow count N, which 
is an indicator of the state of the soil before the pile is installed 
into the ground. Based on local experience in Hong Kong (e.g., 
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Malone et al. 1992; GEO 2006), the deterministic model used to 
predict the total capacity of a large-diameter bored pile used in 
this study is as follows 
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where g(θ) = pile capacity model; θ = uncertain input parameters; 
n = number of soil layers; Nn = SPT blow count N of soil layer n; 
and Di, li and iN  = diameter, length of the pile in soil layer i and 
average N of the soil layer, respectively. In Eq. (1), the values of 

iN  and Nn are often hard to determine accurately, so uncertain 
model input parameters can be denoted as θ = { 1N , 2N , ..., nN , 
Nn}. 

2.2 Characterization of Parameter Uncertainty 

To get some feeling about the magnitude of the parameter 
uncertainty, data of 17 pile-load tests are collected (Chu 2007), as 
summarized in Table 1. All these piles are founded in soils. The 
diameters of these piles are in the range of 1.0 m to 1.5 m. The 

lengths of these piles are in the range of 17.3 to 72.7 m. The in-
formation available for each pile test includes: Soil stratum pro-
file, SPT N value profile, pile material, pile geometry and 
load-settlement curve of the pile-load test. For the 17 piles, the 
encountered soils included fill, marine deposit, alluvium, residual 
soil, completely decomposed granite, and completely decom-
posed volcanic. The uncertainties in N and N  of the soil layers 
were evaluated based on in-situ SPT N profiles assisted with en-
gineering judgment. It is found that the coefficients of variation 
(COV) of N of different soil layers are typically in the range of 
0.10-0.70. For comparison, Phoon and Kulhawy (1999) reported 
that the COV values of N in sand layers are in the range of 
0.19-0.62. Note that N  denotes the mean of N in a soil layer, so 
it has a smaller COV value due to the averaging effect. The dif-
ference between the COV values of N  and N of a soil layer 
mainly depends on the thickness of the soil layer. For the soil 
layers involved in the 17 piles, the COV values of N  are typi-
cally in the range of 0.05 ~ 0.20. 

Table 1  Information of 17 test piles for calibrating model uncertainty factor (adapted from Chu 2007) 

Site1 Length Diameter Construction details Stratum Pile 
Number  (m) (m)  Soil type (thickness in meter) 

1 NC 48.8 1.5 Grabs, RCD (casing, water) Fill (15.7), Marine deposit (1), Alluvium (9.5), CDG2 (22.7) 

2 NC 54.4 1.3 Grabs (casing, water) Fill (21), Marine deposit (0.9), Alluvium (1.1), CDG (31.4) 

3 TC 38.5 1.2 Grabs (casing, water) Fill (0.6), Alluvium (10.5), CDV2 (27.8) 

4 TC 25.5 1.2 Grabs (casing, water) Fill (5.4), Alluvium (12.7), CDV (7.5) 

5 TC 39.3 1.2 Grabs (casing, water) Fill (2.2), Alluvium (9.6), CDV (27.5) 

6 TSW 30.2 1.5 Grabs (casing, water) Fill (4.5), Alluvium (3.0), Metasiltstone (22.7) 

7 YL 31.8 1.2 Grabs (casing, water) Fill (3.1), Alluvium (10.8), CDV (18.0) 

8 MOS 72.7 1.5 Grabs (bentonite) Fill (12.5), Marine deposit (0.1), Alluvium (15.9), CDG (44.2) 

9 WKC 51.6 1.5 Grabs, RCD (casing, water) Fill (10.0), Marine deposit (3.5), Alluvium (5.5), Residual soil (10.0), CDG (22.7)

10 WKC 43.5 1.5 Grabs (casing, water) Fill (29.0), CDG (14.5) 

11 WHC 45.0 1.8 Grabs (casing, water) Fill (10.0), Marine deposit (3.0), Alluvium (2.0), CDG (30.0) 

12 TG 36.9 1.0 Grabs (casing, water) Fill (14.0, Alluvium and Marine deposit (11.0), CDG (12.0) 

13 TG 16.8 1.5 Grabs (casing, water) Fill (7.3), Alluvium and Marine deposit (7.3), CDG (2.2) 

14 TG 17.3 1.5 Grabs (casing, water) Fill (4.4), Alluvium and Marine deposit (4.5), CDG (8.4) 

15 TG 25.1 1.5 Grabs (casing, water) Fill (13.3), Alluvium and Marine deposit (7.0), CDG (4.8) 

16 TG 42.0 1.0 Grabs (casing, water) Fill (14.0), Alluvium and Marine deposit (8.0), CDG (20.0) 

17 TG 21.2 1.2 Grabs (casing, water) Fill (6.1), Alluvium and Marine deposit (6.1), CDG (9.0) 

1. NC = Nam Cheong Station; TSW = Tsuen Wan West Station; TC = Tung Chung Station; YL = Yuen Long Station; WHC = Western Harbour Corridor; TG = 
Telford Garden; WKC = West Kowloon Corridor; IEC = Island Eastern Corridor; MOS = Ma On Shan Rail; FPMTR = First Phase of Mass Transit Railway; 

2. CDG = completely decomposed granite; HDG = highly decomposed granite; CDV = completely decomposed volcanic. 
 
 
 



Zhang et al.: Reliability Based Design of Pile Foundations Considering Both Parameter and Model Uncertainties    121 

 

Based on the failure threshold suggested by Hinary and 
Kulhawy (1989), 6 out of the above 17 piles did not reach failure 
during the load testing. To study the effect of parameter uncer-
tainty on pile capacity prediction, Fig. 1 compares the measured 
pile capacity, or the maximum load applied in a load test if the 
pile was not loaded to failure, with the lower and upper bounds 
of the predicted pile capacities corresponding to a confidence 
level of 97.5%. The bounds of the predicted pile capacities are 
calculated using Monte Carlo simulation considering only the 
uncertainty in θ. As can be seen in Fig. 1, out of the 17 piles, the 
measured capacities of four piles are outside the 97.5% confi-
dence bounds of the predicted capacity; the maximum loads ap-
plied to three piles are above the upper bound of the predicted 
pile capacity. Such a large discrepancy suggests that the disparity 
between measured and predicted pile capacities cannot be fully 
explained by parameter uncertainties alone (i.e., uncertainty in 
θ).  

The reason for the above phenomenon is that the model un-
certainty associated with Eq. (1) for pile capacity prediction is 
not considered in the probabilistic analysis. The model uncer-
tainty may arise from several sources, such as: 
(1) SPT N is only an approximate index for representing soil   

property but it cannot reflect the effects of construction 
procedure on pile capacity, which is crucial for the capacity 
of a bored pile; 

(2) The mobilized shaft friction and toe resistance depend on 
the stress-strain relationship of the pile-soil interface, which 
is not explicitly considered in Eq. (1); and 

(3) The relationships used to predict shaft and toe resistances 
based on SPT N are not accurate. For a more realistic pre-
diction of pile capacity, the model uncertainty associated 
with Eq. (1) must be assessed.  

2.3 Characterization of Model Uncertainty 

To model the effect of model uncertainty on pile capacity 
prediction, a model correction factor α is applied to the predic-
tion model as follows 

( )y g= α θ   (2) 
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Fig. 1 Comparison of measured capacity or maximum load 

applied in a load test with bounds of predicted pile 
capacity (without considering model uncertainty) 

where y = actual pile capacity. Let Ε (α) and Std (α) denote the 
mean and standard deviation of α, respectively. These two pa-
rameters quantify the characteristics of the model uncertainty. 
More specifically, while E (α) denotes how on average the model 
prediction is close to the actual pile capacity, Std (α) denotes the 
scatter of the model error around its mean value. Therefore, the 
model would be more biased when E (α) is far away from 1, and 
the magnitude of model uncertainty would increase when Std (α) 
increases. 

Let ε = ln(α) and assume α is lognormally distributed. As 
such, ε is a normal random variable. Let με and σε be the mean 
and standard deviation of ε. Based on the above assumptions, 
characterizing the model uncertainty is equivalent to determining 
the distributions of με and σε. In this study, the model uncertainty 
is characterized based on the Bayesian method suggested in 
Zhang et al. (2009), where the effects of parameter uncertainty 
on model uncertainty characterization can be explicitly consid-
ered, as described below.  

Let Pi be the measured capacity of the ith pile or the maxi-
mum load on the ith pile if it did not fail during the loading test. 
Based on Zhang et al. (2009), the posterior distribution of    
{με, σε} can be calculated as  
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where k = a normalization constant to make the posterior prob-
ability density function valid; f (με σε) = prior distribution of με 
and σε; θi = θ of the ith pile;  μln g(θi) and σln g(θi) = mean and stan-
dard deviation of ln g(θi); φ = probability density function of a 
standard normal distribution; and Φ = cumulative distribution 
function of a standard normal variable. In Eq. (3), μln g(θi) and σln 

g(θi), which denote the effect of uncertainty in θi on model uncer-
tainty characterization, are obtained by lumping the uncertainties 
in θi into ln g(θi). μln g(θi) and σln g(θi) can be calculated using 
methods like Monte Carlo simulation or Taylor’s expansion (e.g., 
Ang and Tang 2007).  

The prior information we used for {με, σε} is 

( ,  ) 1, ,  0f Sε ε ε εμ σ ∝ −∞ < μ < +∞ < σ <  (4) 

in which S is a sufficiently large number so that the value of the 
likelihood function is negligible. With this prior distribution, f (με, 
σε | P1, P2, …, P17) is proportional to the likelihood function, so 
the model uncertainty is solely determined by the observed data. 

As it is very costly to conduct load tests on large diameter 
piles, such test data are rare. In this study, all the 17 pile tests in 
Table 1 are used for model uncertainty characterization. To ob-
tain f (με, σε | P1, P2, …, P17), the values of μln g(θi) and σln g(θi) of 
the 17 piles are first calculated using Monte Carlo simulation. 
Then, these values are substituted into Eq. (3), and the posterior 
density of με and σε is calculated using a grid calculation method 
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suggested in Zhang (2009). With this grid calculation method, 
the obtained posterior distributions of με and σε are shown in Fig. 
2. The posterior mean and standard deviation of α, i.e., E (α) and 
Std (α), are 2.135 and 2.147, respectively. The value of E (α) is 
larger than 1, implying that the model described above is on av-
erage biased towards the conservative side. The value of Std (α) 
is also quite large, indicating that the magnitude of model uncer-
tainty is also large. The model correction factor, α, has a COV of 
1.005, which is significantly larger than the COV values of N  
and N as mentioned previously. This highlights the importance to 
characterize model uncertainty: If the model uncertainty is not 
characterized, the major uncertainty involved in a design may be 
ignored. Also, large model uncertainty implies that the model 
studied here may be an inefficient design method. As the major 
purpose of this paper is to illustrate how to separate parameter 
and model uncertainties in the pile design and how to develop 
resistance factors considering both two types of uncertainties, the 
following study is still based on the model as described in Eq. (1). 
In practice, it is possible that one may use a different model for 
design of large diameter bored piles; in such a case, the proce-
dure presented in this paper can still be used to derive resistance 
factors when a different model is adopted. 

One possible reason for the large model uncertainty may be 
due to the fact that some of the piles in the database for model 
uncertainty characterization were not loaded to failure. For a pile 
that was not loaded to failure, we only know its capacity is larger 
than the maximum load applied in the load test. To see the effect 
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Fig. 2 Effects of piles not loaded to failure on model 

uncertainty characterization 

of piles not loaded to failure, the model uncertainty is character-
ized again, assuming that the maximum load is the capacity of a 
pile if it was not loaded to failure. In such a case, the Bayesian 
formulation for model uncertainty characterization is (Zhang et al. 
2009) 
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Substituting the values of μln g(θi) and σln g(θi) of the 17 piles 
into Eq. (5), the posterior distributions of με and σε are calculated 
based on Eq. (5) using the grid calculation method, and the re-
sults are also shown in Fig. 2. Note whether a pile was loaded to 
failure or not does not affect the calculation of μln g(θi) and σln g(θi), 
so the values of μln g(θi) and σln g(θi)  are the same as those used in 
Eq. (3). Figure 2 shows that both the distributions of με and σε 
become less spread when Eq. (5) is used for model uncertainty 
characterization. As a result, the values of E (α) and Std (α) in 
this case are 1.410 and 0.963, respectively, which are signifi-
cantly smaller than those obtained previously. The value of E (α) 
is reduced because by regarding the maximum load as the capac-
ity of a pile if the pile did not fail, one actually takes the lowest 
possible capacity as the capacity of the pile, thus underestimating 
the actual pile capacity and hence the mean of model correction 
factor. The value of Std (α) also decreases because failed piles 
contain more accurate information than piles that were not loaded 
to fail, and therefore are more effective in characterizing the 
model uncertainty. Nevertheless, assuming the maximum load as 
the capacity of a pile does not reflect the real state of information, 
hence model uncertainty characterization based on this conven-
ient assumption is only notional. The following study is based on 
the model uncertainty characterized based on Eq. (3), which can 
utilize both piles loaded to failure and piles not loaded to failure 
for model uncertainty characterization. 

3. CALIBRATING RESISTANCE FACTORS 
CONSIDERING BOTH TYPES OF 
UNCERTAINTIES 

To improve practical reliability based design, the parameter 
and model uncertainties should be considered in developing re-
sistance factors. In this study, the resistance factors are deter-
mined using the design point method (e.g., Ang and Tang 1984), 
as briefly described below. 

3.1 Design Point Method  

Let u(ϕ) = 0 denote a limit state function that can be used to 
discriminate whether a system is safe or not, where ϕ = {ϕ1, ϕ2, 
…, ϕn} are uncertain variables in the limit state function. If ϕ is 
multivariate normal, the failure probability can be calculated 
approximately as follows 

1 ( )fp ≈ − Φ β   (6) 
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where β = reliability index; μϕ = mean of ϕ; and Cϕ = covariance 
matrix of ϕ. The point minimizing the expression in Eq. (7), 
which is denoted as ϕ* here, is usually called design point. When 
the target reliability index is met, the partial factor for ϕi can be 
determined based on the design point as follows 

*
i

i
ni

ϕ
ϕ

γ =
ϕ

  (8) 

where γϕi = partial factor for ϕi; and ϕni = nominal value of ϕi, 
which can be related to the mean of ϕi, i.e., μϕi, through a bias 
factor λϕi as follows 

i
ni

i

ϕ

ϕ

μ
ϕ =

λ
  (9) 

In Eq. (7), it is assumed that ϕ follows the multivariate nor-
mal distribution. If ϕ is not multivariate normal, the design point 
can be found with the assistance of “equivalent normal” variables 
(e.g., Ang and Tang 1984). After the design point is found, Eq. 
(8) can be used to find partial factors for the uncertain variable in 
the limit state function. Calibrating partial factors with the design 
point method can be implemented conveniently in a spreadsheet 
(e.g., Low and Tang 1997, Low and Tang 2007). 

3.2 Application to the Pile Capacity Model 

For the corrected pile capacity model as described by Eq. (2), 
its limit state function can be written as: 

( ) 0S T L DR R S Sα + − − =   (10) 

where RS = shaft resistance; RT = toe resistance; SL = live load; 
and SD = dead load. The load resistance factor design (LRFD) 
format of this limit state function can be written as 

     ( )
S Tn R nS R nT SL nL SD nDR R S Sαγ α γ + γ = γ + γ  (11) 

where γα, γRS, γRT, γSL, γSD = partial factor for α, RS, RT, SL; and SD, 
respectively; and αn, RnS, RnT, SnL, SnD = nominal values for α; RS, 
RT, SL, and SD, respectively. 

For illustrative purpose, in this study SL is assumed to follow 
the lognormal distribution with a coefficient of variation (COV) 
of 0.18; SD is assumed to be a lognormal variable with a COV of 
0.1. The bias factors for SL and SD, i.e., λSL and λSD, are taken as 
1.05 and 1.0, respectively. The above load statistics and bias fac-
tors are taken from Ellingwood et al. (1980). Let μSL and μSD 
denote the means of SL and SD, respectively. The ratio of μSL to 
μSD is structure specific, and assumed to be 0.33 here. Barker et 
al. (1991), McVay et al. (2000), and Zhang (2004) showed that β 
is relatively insensitive to the ratio of μSL to μSD. The bias factors 
for resistance factors, i.e., λRS and λRT, are taken as 1.0. Note that 
the bias factors of λRS and λRT here are defined according to Eq. 
(9), and are not relevant to the model correction factor α. The 
nominal values of RS and RT are calculated using the mean values 
of θ. The nominal value for α, i.e. αn is taken as 1.0. 

In practice, the statistics of RS and RT vary from one pile to 
another. As a result, the obtained partial factors may also vary 
from pile to pile, even when the target reliability index is the 
same. To see how the partial factors may vary from pile to pile, 

the following procedure is used to determine the partial factors of 
each of the 17 piles to achieve a certain target reliability index: 
(1) As the partial factors do not depend on the absolute values 

of load and resistance variables, μSL is set as 1.05 for sim-
plicity. Using μSL / μSD = 0.33, μSD = 0.35. The COV values 
of SL and SD are 0.18 and 0.1, respectively. The mean values 
and standard deviations of SL and SD can be calculated based 
on their mean and COV values. 

(2) Calculate the COV values of the shaft and tip resistances, 
respectively. Calculate the ratio of the mean shaft resistance 
to the mean tip resistance. 

(3) Adjust the mean shaft resistance while maintaining the ratio 
of the mean shaft resistance to the mean toe resistance until 
the target reliability index is achieved. During this process, 
the COV values of shaft and toe resistances are fixed. The 
standard deviations of shaft and toe resistances are calcu-
lated based on their mean and COV values. 

(4) Calculate the partial factors based on Eq. (8). 
Figures 3(a)-3(e) show the values of γα, γRS, γRT, γSL, and γSD 

for the 17 piles when the target reliability index is 2.5, respec-
tively. There is relatively larger scatter in the values of γRS and 
γRT of the 17 piles; for comparison, the values of γα, γSL, and γSD 
of the 17 piles are almost identical. This is probably because 
while the distributions of RS and RT vary from pile to pile, the 
distributions of α, SL and SD are the same for all the 17 piles.  

4. ADJUSTING RESISTANCE FACTORS TO 
COMPLY WITH STRUCTURAL CODES 

One feature for limit state design in geotechnical engineer-
ing is that the factors for loads shall be consistent with those 
specified in structural codes. However, load factors obtained 
directly from the design point method may not be the same as 
those specified in structural codes. For instance, according to BD 
(2004), the partial factors for dead load and live load for build-
ings are 1.4 and 1.6, respectively. In the above analysis, the fac-
tors for dead load and live load are all lower than 1.4 [See Figs. 
3(d) and 3(e)]. Thus, to adopt the load factors specified in BD 
(2004), the resistance factors determined directly based on the 
design point method should be increased. Based on this idea, the 
following design equation can be adopted to determine the re-
quired pile resistance, if the partial factors for loads specified in 
BD (2004) are to be used  

   ( ) 1.6 1.4
S Tn R ns R nt nL nDR R S Sαηγ α γ + γ = +  (12) 

where η is defined as 

1.4 1.6min ,  
SL SD

⎧ ⎫
η = ⎨ ⎬

γ γ⎩ ⎭
  (13) 

It can be shown that if Eq. (12) is used for design, the reli-
ability level of the pile foundation will at least meet the target 
reliability level (see Appendix). This idea was also used previ-
ously in Foye et al. (2006) to determine partial factors for shal-
low foundations.  

Assuming the target reliability index is 2.5, the η values of 
17 piles are shown in Fig. 3(f), which are almost identical. This is 
because the values of γSL and γSD are quite similar for all the 17 



124  Journal of GeoEngineering, Vol. 4, No. 3, December 2009 

0

0.4

0.8

1.2

0 5 10 15 20

Pile number

γ α

 
 

0.0

0.4

0.8

1.2

0 5 10 15 20

Pile number

γ R
S

`

 

0.0

0.4

0.8

1.2

0 5 10 15 20

Pile number

γ R
T

0.0

0.4

0.8

1.2

0 5 10 15 20

Pile number

γ S
L

 
 

0.0

0.4

0.8

1.2

0 5 10 15 20

Pile number

γ S
D

 

0.0

0.5

1.0

1.5

0 5 10 15 20

Pile number

η

 
Fig. 3  Calibrated partial factors and η values for the 17 piles (target reliability index = 2.5) 

piles, as shown in Figs. 3(d) and 3(e). The η values of the 17 
piles are all about 1.29, indicating that the resistance factors 
should be increased by about 30% to be consistent with structural 
codes. Such an amount of change is appreciable. If the resistance 
factors determined from the design point method is directly used 
for design without adjustment, the design would be unduly con-
servative. 

As the values of γα and η for different piles are similar [See 
Figs. 3(a) and 3(f)], these two quantities may be lumped with the 
partial factors for shaft and toe resistances to reduce the number 
of partial factors involved in the design as follows 

  RS n RSα′γ = ηγ α γ   (14) 

  RT n RTα′γ = ηγ α γ   (15) 

where γRS' and γRT' are lumped shaft and toe resistance factors, 
respectively. With Eqs. (14) and (15), the design equation, Eq. 
(12), becomes 

1.6 1.4
s TR nS R nT nL nDR R S S′ ′γ + γ = +  (16) 

Based on Eqs. (14) and (15), the lumped resistance factors 
are calculated and shown in Fig. 4(a), for the case where the tar-
get reliability index is 2.5. The values of γRS' of the 17 piles have 
a mean of 0.241 and a standard deviation of 0.005; the values of 
γRT' of the 17 piles have a mean of 0.225 and a standard deviation 
of 0.004.  

5. SUGGESTED RESISTANCE FACTORS 
FOR DESIGN 

In the above, the resistance factors for the 17 piles are cal-
culated. One practical problem one may raise is: What are the 

resistance factors one should use in a future design? Figure 4(a) 
shows that the variation of lumped resistance factors from pile to 
pile is small when the target reliability index is 2.5. Thus, for the 
design of a future pile, the values of γRS' and γRT' can take 0.241 
and 0.225, respectively, if the target reliability index is 2.5.  

In practice, the target reliability index for a single pile is of-
ten in the range of 2.0 ~ 3.5. The lumped resistance factors have 
also been determined for the 17 piles assuming target reliability 
index values of 2.0, 3.0, and 3.5, respectively, as shown in Figs. 
4(b) ~ 4(d). As in the case where the target reliability index is 2.5, 
it is also found that the variation in the values of a certain lumped 
resistance factor of the 17 piles is small at a given target reliabil-
ity index. Therefore, the mean values of resistance factors of the 
17 piles are suggested as the resistance factors for a future design, 
as in the case of a target reliability index of 2.5. 

Figure 5 shows the suggested lumped resistance factors 
when the target reliability index varies from 2.0 to 3.5. The re-
sistance factors decrease as the target reliability index increases, 
implying lower resistance factors should be adopted if a higher 
level of reliability is required, which is reasonable. In particular, 
Fig. 5 shows that the resistance factors highly depend on the 
specified target reliability index. For instance, the resistance fac-
tors in the case where the target reliability index is 2.0 are about 
two times of those in the case where the target reliability index is 
3.0. The reliability theory provides a quantitative way to deter-
mine resistance factors considering the target reliability level, as 
well as the amount of uncertainty involved in the design. One 
may observe that the resistance factors shown in Fig. 5 are 
slightly lower than those reported in the literature (e.g., 
AASHTO 2004). As noticed previously, the pile prediction 
model on average underestimates the actual pile capacity, which 
implies that larger resistance factors can be adopted. On the other 
hand, the COV of the model correction factor is also large, 

(d) 

(b)

(e) (f) 

(a) (c) 
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Fig. 4  Lumped resistance factors of the 17 piles (βT: target reliability index) 
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Fig. 5 Relationship between lumped resistance factors and 

target reliability index 

implying that smaller resistance factors should be employed. 
Since the resistances factors in Fig. 5 are relatively low, it means 
that the effect of COV of the model correction factor is more 
obvious in the present study.  

Note the resistance factors shown in Fig. 5 are developed 
based on the 17 piles in Table 1. These resistance factors are thus 
ideally suitable for a future design that has similar amount of 
parameter and model uncertainties as those of the 17 piles. If a 
pile is significantly different from those piles in the calibration 
database, one should use methods like FORM for site-specific 
reliability based design. 

6. SUMMARY AND CONCLUSIONS 

The research and results reported in this paper can be sum-
marized as follows:  
(1) Two types of uncertainty exist in the design of large diame-

ter bored piles, i.e., uncertainty in model input parameters 
and model uncertainty. The parameter uncertainty cannot 
solely explain the disparity between predicted pile capacity 
and measured pile capacity. For a more realistic pile capac-
ity prediction, the model uncertainty must be considered. 

(2) The model uncertainty can be characterized using pile load 
test data through a Bayesian method. Piles not failed during 
load tests have an important effect on model uncertainty 
characterization. Taking the maximum load as the capacity 
of a pile not loaded to failure may be a convenient assump-
tion, but it underestimates both the mean and standard de-
viation of the model correction factor.  

(3) The design point method can be used to determine the resis-
tance factors for pile design. To use load factors specified in 
the structural codes, the resistance factors determined from 
the design point method can be scaled such that the reliabil-
ity level in a geotechnical design will be equal to or higher 
than the target reliability level. In this study, to use load 
factors specified in a structural code, the partial factors for 
resistance determined from the design point method are in-
creased by about 30%, when the target reliability index is 
2.5. 

γRS'
γRT'

γRS'
γRT' 

γRS' 
γRT' 

γRS' 
γRT' 

(a) βT
 = 2.5 (b) βT

 = 2.0 

(c) βT
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(4) As the partial factor for the model correction factor and the 
adjustment factor for resistance factors to comply with 
structural codes are similar for different piles, these factors 
can be lumped with resistance factors to reduce the number 
of partial factors. At a given target reliability level, the val-
ues of a lumped resistance factor vary little from one pile to 
another. For practical reliability based design, the mean 
value of the lumped resistance factor determined for various 
piles is suggested as the resistance factor for a future design. 
The lumped resistance factors depend heavily on the speci-
fied target reliability index. For instance, the lumped resis-
tance factors are reduced by about one half when the target 
reliability index increases from 2.0 to 3.0. The lumped re-
sistance factors suggested in this study is ideally suited for 
the design of a pile similar to those of the piles in the cali-
bration database. 
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APPENDIX  

Consider the case 

1.4 1.6
SD SL

≥
γ γ

  (A1) 

According to Eq. (13), 

1.6
SL

η =
γ

  (A2) 

Then the following equation holds 

    
1.6 1.6

SL nL SD nD SL nL SD nD
SL SL

S S S Sηγ + ηγ = γ + γ
γ γ

 (A3) 

According to Eq. (A1), the right hand side of Eq. (A3) can be 
written as 

  
1.6 1.41.6 1.6nL SD nD nL SD nD

SL SD
S S S S+ γ ≤ + γ

γ γ
 (A4) 

Note the right hand side of Eq. (A6) in fact is 

 
1.41.6 1.6 1.4nL SD nD nL nD

SD
S S S S+ γ = +

γ
 (A5) 

Based on Eqs. (A3) ~ (A5), the following inequality exists  

  1.6 1.4
dSL nL S nd nL nDS S S Sηγ + ηγ ≤ +  (A6) 

Note both the terms at the left and right hand sides of Eq. 
(A6) may be used to calculate the desired amount of resistance. If 
the left hand side term is used, the design equation is the same as 
Eq. (11). In such a case, the designed reliability index of the sys-
tem is the same as the target reliability index. On the other hand, 

if the right hand side term is used, which is the case of Eq. (13), 
the calculated resistance would not be less than the case where 
the left hand side term in Eq. (A6) is used for calculation of re-
sistance. This means the resistance in the design would not be 
less than what is required to achieve the target reliability index. 
Therefore, if Eq. (A1) is used for design, the reliability index of 
the design would be equal to or higher than the target reliability 
index. 

Following the reasoning shown above, it can be shown that 
when η defined in Eq. (13) is used, the reliability level in a de-
sign will also not be lower than the target reliability level in the 
following case 

1.4 1.6
SD SL

<
γ γ

  (A7) 
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