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OBSERVATIONS IN RELIABILITY ANALYSIS OF A 1-D 
CONSOLIDATION PROBLEM 
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ABSTRACT 

This paper presents the results of a reliability analysis for a one-dimensional consolidation problem. The peculiarity of this 
problem is that there are two local solutions for the design points, depending on the initial point of the search algorithm in the 
first-order reliability method, probably due to the non-differentiability of the performance function. One of the local design points 
is the global solution of the first-order reliability method, while the other is a fake one. Unfortunately, it turns out to be relatively 
easy to find the fake solution in certain scenarios. This phenomenon of multiple design points is studied and documented in detail 
in this paper. The analysis results by using other reliability methods are also presented for comparison. Finally, recommendations 
are given for the suitable reliability methods for this particular example. The conclusion of this paper suggests that cautions 
should be used when implementing any design-point based reliability method to problems with non-differentiable performance 
functions. 
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1. INTRODUCTION 
It is well known that many uncertainties are present in geo-

technical engineering. As a consequence, a safety factor greater 
than unity does not guarantee safety. In the past, safety margins 
(i.e., safety factor > 1) are the primary way of accommodating 
and quantifying these uncertainties. More recently, reliability, 
namely one minus failure probability, has been taken as a more 
rigorous quantification of geotechnical uncertainties (Christian, 
et al., 1994; Low, et al., 1998; Zhang, et al., 2001; Phoon, et al., 
2003; Fenton and Griffiths, 2003; Chalermyanont and Benson, 
2004). 

Many reliability methods are originally developed by re-
searchers in structural engineering, e.g. first- and second-order 
reliability methods (Ang and Tang, 1984; Der Kiureghian, et al., 
1987; Melchers, 1999), first-order second moment methods (Ang 
and Tang, 1984), etc. Their applicability to geotechnical prob-
lems should be examined because geotechnical models may have 
different characteristics from structural ones. For instance, spatial 
variability in ground is usually quite pronounced, but this may 
not be the case in structural components; constitutive and gov-
erning equations of geotechnical materials can be highly nonlin-
ear or even discontinuous, while structural components may be-
have linearly in small stress conditions. Direct use of reliability 
methods originated from structural engineering for geotechnical 
problems without verification can be dangerous and giving mis-
leading conclusions. 

This paper addresses the issue of non-differentiability in 
performance functions that is often encountered in geotechnical 

problems. In particular, a simple one-dimensional consolidation 
problem will be taken to demonstrate the effect of this non-  
differentiability in reliability analyses. Such non-differentiability 
clearly exists in a one-dimensional consolidation problem be-
cause of the switching between normally consolidation and over- 
consolidation regimes. The focus will be placed at the phenome-
non of multiple design points, which are needed in the first-order 
reliability method (FORM) and second-order reliability method 
(SORM). The conclusion is that FORM and SORM can give 
misleading analysis results due to the issue of multiple design 
points although they are among the most popular reliability 
methods. Asides from FORM and SORM, other popular reliabil-
ity methods including first-order second-moment method, Monte 
Carlo simulation (Ang and Tang, 1984) and subset simulation 
(Au and Beck, 2001) will be also examined for their consistency 
over problems with non-differentiable performance functions.  

Because FORM is very popular, attempts are made to pro-
pose FORM-based reliability methods that are able to resolve this 
issue of multiple design points, but one should be cautious that 
the proposed method may only work well for consolidation 
problems. For other geotechnical problems with non-       
differentiable performance function, the proposed method may 
not work at all. 

The purpose of this paper is not to make general conclusions 
regarding problems with non-differentiable performance func-
tions but to demonstrate a “warning” example to alert geotechni-
cal researchers and practicing engineers to use cautions in 
choosing reliability methods. The structure of this paper is as 
follows. First the consolidation example will be presented, and 
adopted reliability methods described. Results of reliability 
analyses will be given, and a preliminary comparison of the re-
sults be made. The issue of multiple design points pertaining to 
FORM and SORM will be examined in detail, and its link with 
the non-differentiability be discussed. Sensitivity analysis will be 
taken to further understand the severity of the issue under various 
scenarios. Finally, attempts are made to suggest FORM-based 
methods that are able to resolve the issue. 
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2. DESCRIPTION OF THE CONSOLIDATION 
PROBLEM 

Consider a saturated clay layer of thickness H between two 
sand layers, as shown in Fig. 1. The surcharge pressure at the 
ground surface is q. The clay is lightly overconsolidated with an 
uncertain OCR. The compression Cc and recompression Cr indi-
ces of the clay are also uncertain. It is assumed that the recom-
pression index is an uncertain fraction α of the compression in-
dex: 

 r cC C= α   (1) 

The failure is defined as the consolidation settlement ex-
ceeds a prescribed allowable settlement Sallow. In other words, the 
performance function G can be written as (G < 0 defines failure): 
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  (2) 

where X contains all uncertain variables; eclay is the initial void 
ratio of the clay; 0′σ  and σ′ are the effective consolidation 
stresses before and after the surcharge is applied; p′σ  is the 
preconsolidation stress; 

0 0 ;      OCR  pq′ ′ ′ ′σ = σ + σ = ⋅ σ　　　  (3) 

and 
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Fig. 1  The consolidation problem 

where γ and γsat are the moist and saturated units weights of the 
soils; γw = 9.8 kN/m2 is the unit weight of water. The moist and 
saturated soil unit weights are not independent, because they are 
related to the specific gravity of the soil solids Gs and the void 
ratio e: 
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where a degree of saturation = 20% is assumed for “moist”. 
There are nine independent random variables in this problem, i.e., 
X contains q, H, eclay, esand, Gs

clay, Gs
sand, OCR, Cc, and α. The 

performance function G(X) is not differentiable at the boundary 
σ′ = p′σ . 

The values and distributions of the basic input variables are 
summarized in Table 1. The allowable settlement Sallow is taken to 
be 0.05 m for the time being.  

3. ADOPTED RELIABILITY METHODS 

The reliability methods employed in this study include the 
first-order second moment (FOSM), first-order reliability method 
(FORM) (Ang and Tang, 1984), second-order reliability method 
(SORM) (Der Kiureghian and Stefano, 1991), direct Monte Carlo 
simulation (MCS) and subset simulation (Subsim) (Au and Beck, 
2001). What follows briefly reviews these methods. 

3.1 FOSM 

Under the assumption that G(X) is normally distributed, the 
failure probability has the following analytical expression: 
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Table 1  The values and distributions of the input variables 

Variable Distribution Statistics 

Sallow Deterministic 0.05 m 

q Lognormal mean = 20 kN/m2; cov* = 20% 

H Gaussian mean = 4 m; cov = 10% 

eclay Lognormal mean = 1.2; cov = 15% 

esand Lognormal mean = 0.8; cov = 15% 

Gs
clay Uniform [2.5, 2.7] 

Gs
sand Uniform [2.5, 2.7] 

OCR Uniform [1.5, 2.5] 

Cc Lognormal mean = 0.4; cov = 25% 

α Uniform [0.1, 0.2] 

* “cov” stands for coefficient of variation. 

Surcharge pressured q 

Sand 

Clay 

l 
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where μG and σG are the mean value and standard deviation of 
G(X); Z is standard Gaussian; Φ is the cumulative density func-
tion of the standard Gaussian distribution; β is called the reliabil-
ity index. The values of μG and σG can be estimated with Taylor 
series expansion of the G(X) function around the mean value of X 
by further assuming G(X) is linear in X. 

3.2 FORM/SORM 

The basis of FORM is the observation that the volume under 
the standard Gaussian distribution over the half space defined by 
a hyperplane in the standard Gaussian space equals to Φ(−β), 
where the reliability index β is exactly the minimum distance of 
the hyperplane to the origin. Let g(Z) be the performance func-
tion transformed to the standard Gaussian space (i.e., Z is jointly 
standard Gaussian). In FORM, g(Z) is assumed to be linear in Z, 
i.e., g(Z) = 0 defines a hyperplane, the failure probability is 
clearly 

( ) ( )( ) 0 ( ) 0 ( )P G X P g Z< = < = Φ −β  (7) 

where β is the minimum distance of the hyperplane g(Z) = 0 to 
the origin. Mathematically, if a point z* on the g(Z) = 0 surface 
that is closest to the origin can be found, the distance between z* 
and the origin is exactly the reliability index β. Such a point z* is 
named the design point. 

As a consequence, the problem of determining failure prob-
ability becomes equivalent to finding the design point. There are 
numerous algorithms of finding the design point; most of them 
involve a constrained optimization in the standard Gaussian 
space. In the following analysis, FORM is implemented with the 
gradient projection (GP) algorithm (Liu and Der Kiureghian, 
1991) for the search of the design point. This algorithm involves 
successive updates of the solution point in the tangential and 
normal directions of the limit state line g(Z) = 0 while keeping 
the update point on the limit state line.  

On the other hand, SORM assumes g(Z) = 0 is a quadratic 
surface in Z. In principle, SORM uses the result the design point 
obtained from FORM and uses a quadratic function of Z to best 
match the g(Z) = 0 surface. The failure probability can then be 
found by analytical solution. In the following analysis, SORM is 
implemented with the algorithm developed by Der Kiureghian 
and Stefano (1991). 

3.3 Mont Carlo Simulation 

Mont Carlo simulation is probably the most robust reliability 
method among all. It is based on the fact that the failure probabil-
ity is the expected value of the indicator function of failure: 

( ) [ ]( )( ) 0 ( ) 0P g Z E I g Z< = <  (8) 

where I [⋅] is the indicator function: if g(z) < 0, I [g(z) < 0] is unity, 
otherwise it is zero. The Law of Large Number states that 
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where Z 
i is the i-th Monte Carlo sample of Z. Although MCS is 

robust, its failure probability estimate is inaccurate if the actual 
failure probability is small. The coefficient of variation (cov) for 
MCS is [(1−PF)/(nPF)]0.5, where n is the total number of MCS 

samples and PF is the actual failure probability. To increase the 
degree of accuracy for small PF, one has to take many samples, 
i.e., n must be large, in MCS, hence MCS can be very computa-
tional demanding. 

3.4 Subsim 

Subset simulation is also a robust reliability method, but it is 
less computational demanding than MCS, even in the case of 
small failure probability. The simple but pivotal idea behind 
Subsim is that a small failure probability can be expressed as a 
product of larger conditional failure probabilities for some inter-
mediate failure events, suggesting the possibility of converting a 
problem involving rare-event simulation into a sequence of 
problems involving more frequent events. This idea can be ex-
pressed as follows. Let F = “g(Z) < 0” denote the target failure 
region and let Fi = “g(Z) < bi” and b1 > b2 > … > bm = 1. There-
fore, F1 ⊃ F2 ⊃ … ⊃ Fm = F are a sequence of m nested failure 
regions. By the definition of conditional probability, 
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This equation indicates that instead of directly calculating a small 
P(g(Z) < 0), one can in principle calculate the probabilities P(F1), 
P(Fi | Fi−1) (i = 2, …, m) and then take their product. The poten-
tial advantage of this alternative is that the probabilities involved 
can be chosen to be much greater than P(g(Z) < 0), thus avoiding 
simulation of rare events. 

As indicated in an overview paper by Schuëller, et al. (2004), 
subset simulation is among the most robust stochastic simulation 
methods for reliability calculations, as quoted:  

“Subset simulation has a wide range of applicability. It per-
forms well irrespectively of the geometry and number of the fail-
ure domains. It is also applicable to non-Gaussian distributed 
random variables. It retains the basic advantage of direct Monte 
Carlo whose performance is unaffected by the dimension of the 
random parameter vector.” 

4. RESULTS OF RELIABILITY ANALYSES 

Table 2 summarizes the analysis results of the adopted reli-
ability methods. The factor of safety of this problem, defined as 
Sallow divided by the settlement when all uncertain variables are 
fixed at their mean values, is found to be around 2.1. The reli-
ability index β for FORM is the distance of the obtained design 
point to the origin. For the other methods, β is simply taken to be 
−Φ−1(PF), where PF denotes the failure probability estimate, and 
Φ is the cumulative density function (CDF) of the standard 
Gaussian distribution. For MCS, 106 samples are taken, and for 
Subsim, 1000 samples are taken in each stage. 

The FOSM, FORM, and SORM are analytical methods, so 
the PF estimators are deterministic. However, MCS and Subsim 
are simulation methods: their PF estimators are random. The cov 
of their estimates are listed in the table. The cov for MCS is cal-
culated based on the formula cov = [(1 − PF) /PF /n]0.5, where n = 
106 is the total number of MCS samples. The cov for Subsim is 
estimated based on the PF estimates from 100 independent Sub-
sim runs. 
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Table 2  Primary analysis results 

Solution method FOSM FORM SORM Subsim MCS

β 2.94 1.43 
2.15* 

1.55 
2.29* 1.53 1.52

PF estimate 0.0017 0.076 
0.016 

0.061 
0.011 0.063 0.064

% error in PF 
estimate −97.4 19.3 

−75.3 
−4.7 

−82.6 −0.8 − 

# of g 
evaluations 19 152 261 1900 106 

Estimator cov n/a n/a n/a 10.2% 0.4%

* multiple design point solutions 
 

The percentage error in PF estimate is the percentage error 
compared to the MCS solution, which should be very close to the 
actual failure probability judging from the 0.4% cov. In spite of 
the high efficiency, FOSM significantly underestimates PF. The 
poor performance of FOSM may be due to its simplified assump-
tion on the distribution of the g function and due to the inaccu-
racy of the linearization for the g function. 

For FORM, the adopted gradient projection (GP) algorithm 
yields two local solutions in the standard Gaussian space: the first 
one gives a reliability index of 1.43, and the second one gives a 
reliability index of 2.15. It is clear that the first solution is the 
global solution because it is closer to the origin. This global solu-
tion corresponds to a failure probability of 0.076, which is rea-
sonably close to the MCS solution 0.064. Whether the GP algo-
rithm would converge to the global solution depends on the loca-
tion of the initial trial point in the standard Gaussian space. Un-
fortunately, when the initial trial point is randomly generated 
from the standard Gaussian distribution, there is only about 20% 
chance of converging to the global solution: 80% of the time the 
algorithm will converge to the fake solution. In particular, when 
the initial trial point is taken to be the origin of the standard 
Gaussian space, the GP algorithm converges to the fake solution. 

The SORM uses the solution from FORM, therefore SORM 
also leads to two solutions. The first solution of PF = 0.061 fol-
lows from the global solution of FORM, while the second solu-
tion of PF = 0.011 follows from the fake solution of FORM. Note 
that the first SORM solution is fairly close to the MCS solution 
0.064, indicating SORM indeed improves FORM for this case 
study if the global solution can be found. However, SORM suf-
fers from the same issue of multiple local design points because 
SORM uses the results from FORM. 

The PF estimate made by Subsim is quite accurate although 
the required computation is more than those for FOSM, FORM, 
and SORM. 

5. ISSUE OF MULTIPLE DESIGN POINTS 

This section discusses in detail the issue of multiple local 
solutions (design points) of FORM. This issue only affects the 
analysis results of FORM and SORM; MCS and Subsim are ro-
bust against this issue. 

5.1 Multiple Solutions 

Table 3 lists the coordinates of the two local solutions ob-
tained in the GP algorithm. After verification, it is found that 

Table 3  Coordinates of the two local design points 

Coordinates of the design points 
in the standard Gaussian space 

Component Global solution 
β = 1.43 

PF = 0.076 

Fake solution 
β = 2.15 

PF = 0.016 

q 0.82 0.97 

H −0.05 0.39 

eclay 0.04 −0.32 

esand 0.14 0.16 

Gs
clay −0.10 −0.12 

Gs
sand −0.09 −0.10 

OCR −1.09 0.00 

Cc 0.35 1.59 

α 0.18 0.92 

 
 
both solutions satisfy the following two necessary conditions for 
design point: 

a. The solution should reside right on the limit-state line g = 0. 
b. In the standard Gaussian space, the gradient vector of the 

performance function evaluated at the solution should be 
parallel to the solution vector itself, i.e., the solution is the 
point on the g = 0 line that is locally closest to the origin. 
Moreover, from the numerical values of the coordinates of 

the two solutions, it is not trivial to identify which solution is 
global or fake. As a consequence, for the instance that a single 
run of the GP algorithm converges to the fake solution, there 
seems to be no viable way at hand to detect the falsity. 

5.2 Non-Differentiability of Performance Function 

Figure 2 is employed to demonstrate the geometry around 
these two local design points. The first plot shows the contour 
lines of the performance function g in the standard Gaussian 
space of q and OCR, where all other seven uncertain parameters 
are fixed at their solution coordinates of the global solution. The 
second plot is for the fake solution. The marker ‘x’ indicates the 
locations of the two local design points. The dark dashed lines 
represent the non-differentiable boundary for σ′ = p′σ . 

The existence of two local design points may have some-
thing to do with the non-differentiability of the performance 
function. Moreover, the failure region in the standard Gaussian 
space seems to be the union of failure regions defined by the 
following two performance functions: 
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Fig. 2 The contour lines of the performance function around 

the two solutions (upper: global solution; lower: fake 
solution) 

 
Let us take the region around the second local design point (the 
lower plot in Fig. 2) as an example. The region in the lower plot 
in Fig. 2 satisfying g < 0 (failure) resides at the right hand side of 
the g = 0 contour line, which is clearly the union of the two fail- 

ure regions defined by g1 < 0 and g2 < 0 shown in Fig. 3. In other 
words, the consolidation problem is similar to an in-series system 
whose failure is defined by the disjunction of the two failure 
events, i.e., failure occurs either the failure of g1 or failure of g2 
occurs. It is interesting to see that the original problem in (2) is 
not in-series, but it behaves like an in-series system due to non- 
differentiability of the performance function. 
 
 

 
Fig. 3 The failure regions defined by g1 and g2 function around 

the second local design point 

5.3 Other Design Point Algorithms 

Apart from the GP algorithm, another two algorithms of 
FORM for finding the design point are examined, including the 
fmincon.m function in matlab® and the simple algorithm in Sec-
tion 6.2.4, p. 361 in Ang and Tang (1984). Table 4 summarizes 
the results of convergence. All algorithms may converge to the 
fake solution, depending on the location of the initial trial point. 
When the initial trial point is randomly generated from the stan-
dard Gaussian distribution, there is always larger chance to con-
verge to the fake solution. When the initial trial point is taken to 
be the origin, only the matlab algorithm converges to the global 
solution: it is likely that this only happens by luck. Furthermore, 
there is a certain chance for non-convergence, i.e., the algorithm 
never reaches a stationary point. The non-convergence may also 
be due to the non-differentiability of the performance function.

Table 4  Convergence for the three algorithms 

Chance of convergence 
Algorithm 

Fake solution Global solution No converge 

Convergence if starting  
from the origin 

GP 78% 15% 7% Fake solution 

Matlab 70% 28% 2% Global solution 

Ang and Tang 83% 17% 0% Fake solution 

0.
02

 
0.

02
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6. SENSITIVITY ANALYSIS 

It is instructive to understand how the existence of multiple 
local design points for FORM/SORM would be affected by the 
change of the input parameters and distributions. Again, this is-
sue of multiple local design points only affects FORM/SORM; 
MCS and Subsim are robust against this issue. 

6.1 Sensitivity over Mean Value of q 

Table 5 shows the analysis results by using the GP algorithm 
for various choices of the mean value of q, denoted by μq, while 
the input values and distributions of other variables are identical 
to those in Table 1. The chance of non-convergence is based on 
the case where the initial trial point is randomly generated by the 
standard Gaussian distribution. It is clear that the existence of 
multiple solutions only happens for μq near 20. Moreover, the 
chance of non-convergence increases as the failure probability 
becomes smaller. Compared with the MCS results, the PF esti-
mated from the global solution of FORM is reasonably accurate, 
although a bias is noticeable. 

6.2 Sensitivity over Range of OCR 

Table 6 shows the analysis results by using the GP algorithm 
for various choices of the range of OCR, while the input values 
and distributions of other variables are identical to those in Table 
1. It is clear that the existence of multiple solutions happens for 
the range of 0 ~ 10 and 1.5 ~ 2.5. The chance of 
non-convergence is reasonably small regardless the OCR range. 
Compared with the MCS results, the PF estimated from the 
global solution of FORM is reasonably accurate despite a certain 
amount of bias.  

6.3 Sensitivity over Sallow 

Table 7 shows the analysis results by using the GP algorithm 
for various choices of Sallow, while the input values and distribu-
tions of other variables are identical to those in Table 1. It is clear 
that multiple solutions occur for several cases. The chance of 
non-convergence increases as the failure probability gets small. 
Compared with the MCS results, the PF estimated from the 
global solution of FORM is reasonably accurate despite a certain 
amount of bias. 

 
 

Table 5  Analysis results for various choices of μq 

Chance of convergence 
(PF estimate from FORM) μq 

(kN/m2) 
Fake solution Global solution No converge 

MCS 
PF 

(n = 106) 

PF 
2-order bound 

PF 
Point estimate 

5 0%  (n/a) 23%  (6.2e−9) 77% 0 [6.2e−9  6.2e−9] 6.2e−9 

10 0%  (n/a) 66%  (6.1e−5) 34% 5.6e−5 [6.1e−5  6.1e−5] 6.1e−5 

20 78%  (0.016) 15%  (0.076) 7% 0.064 [0.083  0.087] 0.085 

30 0%  (n/a) 91%  (0.35) 9% 0.37 [0.36  0.40] 0.39 

50 0%  (n/a) 100%  (0.85) 0% 0.88 [0.91  1.00] 0.95 

 

Table 6  Analysis results for various choices of OCR range 

Chance of convergence 
(PF estimate from FORM) OCR range 

Fake solution Global solution No converge 

MCS 
PF 

(n = 106) 

PF 
2-order bound 

PF 
Point estimate 

0 ~ 10 76%  (0.016) 16%  (0.15) 8% 0.16 [0.16  0.16] 0.16 

0 ~ 1.5 0%  (n/a) 100%  (0.94) 0% 0.95 [0.92  0.92] 0.92 

1.5 ~ 2.5 78%  (0.016) 15%  (0.076) 7% 0.064 [0.083  0.087] 0.085 

2.5 ~ 5 0%  (n/a) 98%  (0.016) 2% 0.011 [0.016  0.016] 0.016 

5 ~ 10 0%  (n/a) 93%  (0.016) 7% 0.011 [0.016  0.016] 0.016 
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Table 7  Analysis results for various choices of Sallow 

Chance of convergence 
(PF estimate from FORM) Sallow 

(mm) 
Fake solution Global solution No converge 

MCS 
PF 

(n = 106) 

PF 
2-order bound 

PF 
Point estimate 

1 0%  (n/a) 100%  (0.98) 0% 0.99 [0.99  1.00] 0.99 

3 10%  (0.15) 89%  (0.24) 1% 0.28 [0.29  0.34] 0.33 

5 78%  (0.016) 15%  (0.076) 7% 0.064 [0.083  0.087] 0.085 

10 19%  (8.2e−6) 39%  (8.4e−3) 42% 4.9e−3 [8.4e−3  8.4e−3] 8.4e−3 

15 0%  (n/a) 29%  (7.2e−4) 71% 3.7e−4 [7.2e−4  7.2e−4] 7.2e−4 
 
 
 
 
 
 
 
 
 
 

7. POSSIBLE REMEDY FOR FORM/SORM 

FORM and SORM are considered to be accurate methods 
among popular reliability methods. They have been widely ap-
plied to civil and geotechnical engineering problems. Unfortu-
nately, they may lead to wrong solutions for the consolidation 
example. It is constructive to propose FORM- or SORM-based 
methods that always lead to the correct solution. This is the pur-
pose of this section. Readers are alerted that these remedial 
methods may only be effective for the consolidation problem; 
they may be not very useful for other geotechnical examples with 
non-differentiable performance functions that also suffer from 
the multiple design problems. 

As mentioned earlier, the non-in-series system defined in (2) 
behaves similarly as the in-series system. Therefore, a possible 
solution to resolve the issue of multiple local solutions of 
FORM/SORM is to replace the original system by the in-series 
system. For an in-series system with two failure modes of g1 and 
g2 described in (11) and (12), two methods can be taken: (a) the 
second-order bound (Ang and Tang, 1984) and (b) point estimate 
(Mendell and Elston, 1974; Phoon, 2008). These two methods are 
briefly reviewed herein. Outside the FORM/SORM framework, 
the issue of multiple local design points can be easily handled by 
adopting either MCS or Subsim. 

7.1 Second-Order Bound 

Under the assumption that the two failure modes g1 and g2 
are positively correlated, it is possible to derive the upper and 
lower bounds for the failure probability of the consolidation 
problem by considering the geometrical properties of intersec-
tions of the two failure regions, leading to the so-called second- 
order bound. The second-order bound simply says that the actual 
failure probability PF of a system with two in-series positively 
correlated components should fall into the following upper and 
lower bounds: 

1 2 21 1 2 21max  [ ,  0] min  [ ,  1]FP P P P P P P+ −+ − ≤ ≤ + −  (13) 

where Pi = Φ(−|| zi
* ||) and z*

i is the design point for the i-th fail-
ure mode: i.e., z*

1 is the design point if g1 in (11) is the only per-
formance function (similar for z*

2), so the process of finding z*
1 

or z*
2 will not suffer from the issue of multiple solutions; P+

21 = 

P(B1) + P(B2) is the upper bound of the probability of {B1 and 
B2}; P−

21 = max [P(B1), P(B2)] is the lower bound of the probabil-
ity of {B1 and B2}; 
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and 
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where θ is the angle between the two design point vectors z*
1 and 

z*
2. 

The resulting upper and lower bounds for the cases studied 
in the previous section are listed in Tables 5 to 7. Slight bias of 
the bounds can be observed, i.e., MCS results occasionally fall 
outsides the bounds, but the issue of multiple solutions is re-
solved because the process of finding z*

1 or z*
2 does not involve 

multiple solutions. 

7.2 Point Estimate 

The second-order bounds do not offer a single estimate of 
the failure probability. The following point estimate can mitigate 
this issue: 

1 2 21FP P P P≈ + −   (16) 

where PF is the system failure probability; 
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is an estimate of the probability that g1 and g2 failure events hap-
pen simultaneously, and 
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The resulting point estimates are also listed in Tables 5 to 7. 
Again, slight bias of the point estimates is evident, but the issue 
of multiple solutions is resolved. 

8. RECOMMENDED RELIABILITY METHODS 

For the consolidation problem, FOSM does not provide a 
consistent reliability estimate. Moreover, the following two is-
sues exist in FORM/SORM: (a) the possibility of finding a non- 
global (fake) design point and (b) the possibility of non-    
convergence. The second-order bound and point estimate meth-
ods seem to be able to resolve these issues although the resulting 
bounds/estimates seem slightly biased. Therefore, the use of the 
latter two methods is recommended at the condition that the 
amount of bias is acceptable. This conclusion may be only appli-
cable to the consolidation example and may not be applicable to 
other geotechnical examples with non-differentiable performance 
functions. 

Monte Carlo simulation and Subset simulation are com-
pletely robust against the existence of local design points. There-
fore, their use is recommended at the expense of more computa-
tion. This conclusion is applicable to all geotechnical examples 
with non-differentiable performance functions. 

9. CONCLUSIONS 

The reliability analysis of a one-dimensional consolidation 
is presented. This “simple” geotechnical problem turns out to be 
challenging because the performance function is not differenti-
able. It is found that this non-differentiability may induce a be-
havior similar to an in-series system although the consolidation 
problem is clearly not an in-series system. 

Several popular reliability methods are examined to investi-
gate their feasibility and consistency over a problem with a non- 
differentiable performance function. The first-order second- 
moment (FOSM) method provides inconsistent reliability esti-
mates. For first-order and second-order reliability methods 
(FORM/SORM), three algorithms of finding design points are 
examined, and all of them show possibility of converging to a 
local design point that is different from the global one, hence 
giving inconsistent reliability estimate. Sometimes they do not 
converge at all. Therefore, cautions should be used when imple-
menting FORM/SORM to problems with non-differentiable per-
formance functions. The 1-D consolidation example serves as a 
“warning” example to alert geotechnical researchers and practic-
ing engineers to use cautions in choosing reliability methods. 

The second-order bound and point estimate methods can re-
solve the issue of multiple local design points for FORM/SORM 
although the resulting estimates are slightly biased. Monte Carlo 
simulation (MCS) and subset simulation (Subsim) are robust and 
always provide consistent reliability estimates although they are 
computational more expensive. 

It is recommended that the second-order bound and point es-
timate methods can be used for the consolidation problem if the 
amount of bias in reliability estimate is acceptable, but the effec-
tiveness of these methods over other geotechnical examples with 
non-differentiable performance functions are not unknown. MCS 

and Subsim are highly recommended because they seem com-
pletely robust against the existence of local design points, and 
this conclusion is general over other geotechnical examples with 
non-differentiable performance functions. 
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