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ABSTRACT 

The effects of setback on the ultimate bearing capacity of rigid surface footings placed on the crest of the slope are evaluated 
using a limit-equilibrium-based method. It is shown that the values of the bearing capacity coefficient or correction factor for the 
ultimate bearing capacity of a footing placed on the crest of a slope can be expressed as linear functions of the setback-to-   
footing-width ratio up to a certain threshold value namely, (b/B)t. Beyond this threshold value, the ultimate bearing capacity is the 
same as those obtained for a similar footing placed on semi-infinite level ground. The value of (b/B)t can be uniquely related to 
the internal friction angle of the foundation soil, φ, regardless of the change in the slope angle, α. Good agreements are obtained 
between the value of correction factors obtained herein and those reported in the literature. It is also shown that a conventional 
indirect approach which deals with the effects of a setback using an equivalent surcharge on the slope surface also works well in 
the sense that the indirect approach generate small errors in the correction factors when compared to those obtained using the di-
rect approach such as the one proposed in the present study. 
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1. INTRODUCTION 
A simple and straightforward way of mitigating possible 

disasters induced by the bearing capacity failure of a shallow 
footing located near a slope is to increase the setback of the foot-
ing (b) as schematically shown in Fig. 1. Regardless of the im-
portance of setback to practical applications, research into this 
aspect has been very limited (e.g., Meyerhof, 1957; Graham, 
1988). One of the reasons that analytical solutions for the ulti-
mate bearing capacity taking into account the setback of footing 
(expressed by a setback distance ‘b’) has rarely been provided is 
schematically shown in Fig. 2. That is, the effect of setback has 
conventionally only been indirectly considered by using the ef-
fect of surcharge, namely, γ ⋅ Df ⋅ Nq (γ: unit weight of soil, Df : 
depth of overburden soil, Nq: Terzaghi’s bearing capacity coeffi-
cient for surcharge). In such cases, the ultimate bearing capacity 
of footing placed on the crest of a slope with a slope angle ‘α’ 
namely, qu (α>0, b>0) can be expressed using Terzaghi’s bearing 
capacity formula (Terzaghi, 1943): 

(α> 0,  > 0) γ (α> 0,  =0) (α>0, =0)
1 =   γ  Ν  + γ  Ν
2u b b f q bq B D⋅ ⋅ ⋅ ⋅ ⋅  (1) 

in which  
B: width of footing  
Nγ (α>0, b=0): bearing capacity coefficient due to self-weight 

of soils for a footing adjacent to the slope with a 
slope angle α. 

 

 
Nq (α>0, b=0): bearing capacity coefficient due to surcharge for 

a footing adjacent to the slope with a slope an-
gle α. 

Df : virtual depth of footing comparable to the foot-
ing with a setback. (Df = b ⋅ tanα is used in the 
following). 

 
However, this indirect approach has some shortcomings. 

First, the surcharge is non-uniform adjacent to the toe of the 
footing as illustrated by the shaded area in Fig. 2, and the effect 
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Fig. 1 Schematic figure showing the effect of setback on the 

failure mechanism of footings placedon the crest of the 
slope 
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Fig. 2 Schematic figure showing the approximation of a footing 

with a setback using a footing with a uniform surcharge 
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of non-uniformity of surcharge increases when the distance of 
setback ‘b’ increases. Second, the crust of the soil that provides 
overburden pressure to the slope surface is subjected to possible 
slope instability similar to that of an infinite slope, i.e., a driving 
force is acting on the interface c-d (see Fig. 2) which is not ac-
counted for in Eq. (1). A possible way to eliminate the above 
drawbacks is to use a direct approach to evaluate the effect of a 
setback of the footing on the bearing capacity coefficient, Nγ 
using a correction factor, ηb, as discussed below. Various correc-
tion factors have been successfully used in foundation engineer-
ing practices in evaluating the effects of slope inclinations, load 
inclinations and load eccentricities (Meyerhof, 1963; Hansen, 
1970; Vesic, 1973). To the best knowledge of the authors, a sim-
plified equation expressing the correction factor ηb is yet to be 
developed.  

2. ANALYTICAL METHODS AND 
VERIFICATION 

Figure 3 schematically shows the failure mechanism as-
sumed in the present study, which consists of a triangular active 
wedge under the footing with a width ‘B’, a transitional zone 
bounded by a logarithmic failure line (defined by the following 
equation) and a passive zone. 

tan  or r eμ⋅ φ= ⋅   (2) 

where r :  radius from the toe of the footing  
ro : radius at the interface between the active wedge and 

the transitional zone 
μ : angle between ro and r. 

In the case of gentle slopes, a passive zone may be fully or 
partially included in the failure mechanism, depending on the 
relative position of the slope and footings. An example is shown 
by the dotted lines in Fig. 3. The failure mechanism shown in Fig. 
3 has been verified by Huang and Tatsuoka (1994) based on the 
model test results reported by Huang, et al. (1994). The zone 
bounded by the failure mechanism illustrated in Fig. 3 is divided 
vertically into slices with a width of 10 mm. It was found that 
slices with this width consistently provide accurate results in the 
sense that further reducing the slice width gives no improvement 
for the calculated values of qu. Janbu’s rigorous slice method 
(Janbu, 1973) which satisfies force and moment equilibria is used 
in the present study. It has been shown that this method is as ac-
curate as other rigorous methods, such as Spencer’s and Mogen-
stern and Price’s slice methods (Fredlund and Krahn, 1977) and 
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Fig. 3  Failure mechanism used in the present study 

the generalized variational method (Leshchinsky and Huang, 
1992). The equilibrium formulation of the slice method and pro-
cedure for deriving ultimate bearing capacity (coefficients) of 
footings are described in Appendix A. Formulations and verifica-
tions of this method have been described in-detail by Huang, et al. 
(1994). In the present study, and also in the study of Huang, et al. 
(1994), a minimum value of vertical footing load is searched via 
an optimization of θB and μ, i.e., via a systematic search of criti-
cal failure mechanisms. The ultimate bearing capacity of footing, 
qu is then calculated based on Eqs. (A1) through (A3). The bear-
ing capacity coefficients for a footing adjacent to aslope (α > 0) 
with or without a set back, namely, Nγ(α>0, b=0) or Nγ(α>0, b>0), can be 
calculated using Eq. (A4). 

Note that in Huang’s analyses, the exponential function in 
Eq. (2) is replaced by ‘eμ ⋅ tan η’ and the value of ‘η’ is determined 
via a trial-and-error procedure searching for an optimized value 
of ‘η’ that generates a minimum value of Nγ. Huang and Tatsu-
oka (1994) found that the optimized value of η is only slightly 
different from the internal friction angle of soil ‘φ’. Therefore, 
the difference in the value of Nγ when using ‘eμ ⋅ tan φ’ or ‘eμ ⋅ tan η’ 
in Eq. (2) is small, as shown in Fig. 4. This figure also shows that 
the value of Nγ obtained using the present method is close to the 
lower bound of various theoretical solutions compiled by Graham, 
et al. (1988). As has been examined by Huang and Tatsuoka 
(1994) that the assumption of the thrust height of interslice force 
at 1/3 of the side-face of the slice generates acceptable interslice 
and slice base forces in the sense that positive interslice and slice 
base forces are obtained along the entire critical failure surface.  

Figure 5 compares the analytical values of Nγ for a rigid 
footing placed on the slope with various slope angles (α = 20°, 
30°, and 40°) and setbacks (b/B ≥ 0). Comparable results on the 
Nγ vs. b/B relationship showing the transition of Nγ from b/B = 0 
into b/B = ∞ (a case of footing placed on a level ground) can be 
obtained. All these curves plateau when the value of b/B is be-
yond the threshold value of b/B, namely (b/B)t, indicating the 
diminishing of the influence of footing setback on the ultimate 
bearing capacity of footing when placed with a setback-to-  
footing width ratio ‘b/B’ larger than (b/B)t. Figure 5 also shows 
that in the cases of φ = 40°, α = 20° and φ = 40°, α = 40°, Mey-
erhof (1957) provided (b/B)t ≒ 4.5 which is close to that pro-
vided in the present study ((b/B)t ≒ 5.0). It is also seen that 
except in the case of b/B = 0 for φ = α = 30° and φ = α = 40° 
conditions, which are unlikely to exist in practice, the difference in 
the value of Nγ between these two analytical solutions is generally 
less than 19% ~ 32%. Comparing this variation with those found in 
other theoretical approaches, as typically shown by the shaded area 
in the logrithmic scale in Fig. 4, a variation in theoretical values of 
Nγ of only 19% ~ 32% can be considered very small. 

3. THE EFFECT OF THE SETBACK OF  
A FOOTING PLACED ADJACENT TO 
THE SLOPE 

Figure 6(a) shows an example of the effect of setback (b/B) 
on the bearing capacity coefficient (Nγ) for a vertically loaded 
footing placed near a slope consisting of a cohesionless soil with 
φ = 30° and various slope angles (α). A footing width B = 5 m 
and a unit weight of soil, γ = 17.6 kN/m3 are used in the present 
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study to derive ultimate bearing capacity of footings. It has been 
verified that the values of Nγ obtained herein are not susceptible 
to the changes in the values of ‘B’ and ‘γ’ for wide ranges of  
0.5 m ≤ B ≤ 20 m and 10 kN/m3 ≤ γ ≤ 20 kN/m3. The effect of 
‘b/B’ on Nγ is expressed by using a correction factor ‘ηb’ in Ter-
zaghi’s bearing capacity formula:  

(α>0, >0) γ (α>0, =0)
1 =   B  γ  Ν η
2u b b bq ⋅ ⋅ ⋅ ⋅  (3) 

or 

γ (α>0,  >0) (α>0, >0)

γ (α>0, =0) (α>0, =0)

Ν
η  =  = 

Ν
b u b

b
b u b

q
q

 (4) 
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Fig. 4 Comparisons of analytical values of  Nγ  for a rigid foot-
ing adjacent to the slope obtained in various studies 
(compiled from Graham, et al., 1988 ) 

 

Fig. 5 Comparisons of theoretical values of Nγ obtained by 
Meyerhof (1957) and the present study 

in which,  
Nγ (α>0, b>0) and Nγ (α>0, b=0): bearing capacity coefficients induced 

by the self-weight of soils for a given slope angle 
(α) under b > 0 and b = 0 conditions, respectively. 

qu (α>0, b=0): ultimate bearing capacity for a footing adjacent to 
the slope with a given slope angle (α) and a setback 
distance b = 0. 

Figure 6(a) shows that for the cases investigated, threshold 
values of ‘b/B’, namely, (b/B)t can be clearly defined and the 
effect of b/B on Nγ is limited to the condition of b/B ≤ (b/B)t. For 
b/B > (b/B)t, the bearing capacity of footing is controlled by a 
failure mechanism similar to that of level ground. The values of 
ηb can be related to ‘b/B’ using bi-linear curves consisting of a 
segment with a slope of ‘Sb’ and a flat segment: 

η =  ( / ) + 1 for /   ( / )b b tS b B b B b B⋅ ≤  (5) 

and  

 ( / ) + 1 for / ( / )b b t tS b B b B b Bη = ⋅ >  (6) 

Figures 6(b), 6(c), and 6(d) show similar analytical data to 
those shown in Fig. 6(a), except that Figs. 6(b), 6(c), and 6(d) are 
for φ = 35°, 40°, and 45°, respectively. Similar conclusions to 
those of Fig. 6(a) can be drawn, except that the values of (b/B)t 
tend to increase with the increase in φ. Figure 7 shows that the 
value of (b/B)t can be expressed as a linear function of φ, as fol-
low: 

1 2( / ) = tb B b b+ ⋅φ   (7) 

in which, b1 = −8.1 and b2 = 0.332 (1/degree) 

In Fig. 7, the values of (b/B)t provided by Meyerhof (1957) 
based on the results shown in Fig. 5 are also plotted. The similar-
ity between these two analytical results is clear. 

Figure 8 shows the value of ‘Sb’ representing the slope of 
the lines for the ηb vs. b/B relationship which can be expressed 
using the following equations. The use of this equation is based 
on the result of a comparative study on various types functions, 
such as, polynominal, logarithmic, and exponential functions. 
The comparative study shows that curve-fittings using Eq. (8) 
generate relatively great values of correlation coefficient com-
pared with the cases using other types of function. 

(tan )z
bS x= ⋅ α   (8) 

in which, ‘x’ and ‘z’ are functions of φ as shown in Figs. 9 and 
10:   

1 2 = +x x x ⋅ φ   (9) 

in which, x1 = 3.657 and x2 = −0.03 (1/degree) 

The value of z in Eq. (8) can be expressed as (see Fig. 10): 

1 2 = + z z z ⋅ φ   (10) 

in which, z1 = 0.135 and z2 = 0.04 (1/degree). 
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(a) φ = 30° 

 
(b) φ = 35° 

 
(c) φ = 40° 

 
(d) φ = 45° 

Fig. 6 Correction factors ηb for ultimate bearing capacity of 
footings placed near the slope with various φ and slope 
angles 

 
Fig. 7 Relationships between (b/B)t and internal friction angle 

of soil, φ 

 
Fig. 8  Relationships between S b and slope angles, α for φ = 35° 

 
Fig. 9  Values of coefficient x as function of φ 

 
Fig. 10  Values of coefficient z as function of φ 
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4. COMPARATIVE STUDY ON THE EFFECT OF 
SETBACK  

Table 1 summarizes the empirical equations for ηb discussed 
earlier. Correction factors ‘ηb’ calculated using empirical Eqs. (5) 
~ (10) are compared with the analytical value of ηb provided by 
Meyerhof (1957), Graham, et al., (1988) and the present study, as 
shown in Fig. 11. In general, values of ηb obtained in the present 
study agree well with those reported by Graham, et al., (1988) for 
the case of φ = 45° and α = 26°; they also agree well with those 
reported by Meyerhof (1957) for the case of φ = 40° and α = 20°.      

Figure 12 shows a comparison between the values of ηb ob-
tained in two ways. The first are based on the direct approach as 
proposed in the present study and the second are those based on 
the indirect approach using synthesized bearing capacity coeffi-
cients ‘Nrq (α>0, b=0)’ which takes into account the combined effect 
of ‘Nγ’ and ‘Nq’ expressed by:  

( 0, 0)
( 0, 0)

( 0, 0) ( 0, 0)

( 0, 0 ) ( 0, 0)

2
N

2 2 N

2
 N N

u b
q b

u b f q b

f
b q b

q
B

q D
B B

D
B

α> >
γ α> >

α> = α> =

γ α> = α> =

⋅
=

γ ⋅
⋅ ⋅ γ ⋅ ⋅

= +
γ ⋅ γ ⋅

⋅
= + ⋅

 

(11)

 

or  

( 0, 0) ( 0) ( 0)
2

N Nf
q b q q

D
N g g

Bγ α> > γ α= γ α=
⋅

= ⋅ + ⋅ ⋅  (12) 

in which, 
Nγq (α>0, b>0): bearing capacity coefficient of footing on the 

crest of a slope (b > 0, α > 0), taking into ac-
count the combined effect of self-weight and 
surcharge of soils. 

Nγ (α=0): Nγ for a footing placed on level ground 
Nq (α=0): Nq for a footing placed on level ground 
gγ: correction factor for Nγ(α=0) the effect of sloped ground 
gq: correction factor for Nq(α=0) the effect of sloped ground 
Df: virtual depth of footing embedment corresponding to a 

certain footing setback (Df = b ⋅ tan α is used in the pre-
sent study) 

 
Table 1 Correction factors for the setback of footing adjacent to 

the slope under vertically and statically loaded conditions 

Number of 
equations Equation Parameters 

5 
ηb = Sb (b/B) + 1 

for b /B < (b/B)
t

See below 

6 
ηb = Sb (b/B)

t
 + 1 

for b /B ≥ (b/B)
t
 See below 

7 (b/B)
t 
= b1 + b2 ⋅ φ b1 

= −8.1 
b2 

= 0.332 (1/degree) 

8 Sb = x ⋅ (tan α)z See below 

9 x = x1 
+ x2⋅φ   

x1 
= 3.657 

x2 
= −0.03 (1/degree) 

10 z = z1 
+ z2 ⋅ φ 

z1 
= 0.135 

z2 
= 0.04 (1/degree) 

The values of Nγq(α=30°, b=B) and Nγq(α=30°, b≥B) shown in Table 2 
for Vesic (1973) and Hansen (1970) are calculated using Eq. (12) 
and bearing capacity coefficients suggested in the respective 
studies. For the value of ηb calculated using indirect approaches, 
ηb is defined as follows:  

( 0, 0) ( 0, b 0) ( 0, 0)

( 0, 0) ( 0, b 0) ( 0, 0)

( 0)

( 0)

N N N2
N N N

2 N
1

N

q b q bf
b

b b

f q q

D
B

D g
B g

γ α> > γ α> = α> =

γ α> = γ α> = γ α> =

α=

γ α= γ

⋅
η = = + ⋅

⋅ ⋅
= + ⋅

⋅

 

Values of ηb in Table 2 and Fig. 12 were calculated using 
the following equations suggested by Hansen (1970): 

( =0) ( =0)N  = 1.5 [N 1] tanqγ α α − φ  (14) 

and 5=  = (1 0.5 tan )qg gγ  − α   (15) 

Values of ηb in Table 2 and Fig. 12 were also calculated us-
ing equations suggested by Vesic (1973): 

( =0) ( =0)N = 2 [N +1] tanqγ α α φ  (16) 

and 2=  = (1 tan )qg gγ − α   (17) 

 

 
Fig. 11 Comparisons of analytical values of ηb obtained in 

various analytical studies 

 
Fig. 12 Comparisons of ηb based on analytical values of Nγ 

and empirical values of Nγq 

(13)
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Table 2  Comparisons the values of  Nγ for φ = 40° 

 Nγ (α=0) Nγ (α=30°, b=0) 

Nγ (α=30°, b=B)  

or 
Nγq (α=30°, b=B) 

Nγ (α=30°, b=2B)  
or 

Nγq (α=30°, b=2B)

The present study 111.7 21.1 40.7 2 61.7 2 

Hansen (1970) 79.5 14.5 1 28.0 3 41.5 3 

Vesic (1973) 109.4 19.6 1 32.9 3 46.2 3 

Graham, et al. (1988) 135 35.5 − − 

Zhu (2000) 120.2 16.6 − − 
Kumar and Mohan Rao 

(2003) 87.3 14.7 29.8 4 44.9 4 
1 Corrected values of Nγ (α=0) using gγ expressed by Eq. (15) or Eq. (17) 
2 Analytical values of Nγ  based on direct approach for the effect of b/B 
3 Nγq (α>0, b>0) calculated using Eq. (12) and the equations of  Nγ (α=0), Nq(α = 0), 

gγ and gq suggested by various authors, Eqs. (14) ~ (18) 
4 Nγq (α>0, b>0) calculated using Eq. (11) and values of Nγ (α>0, b=0) and Nq (α>0, b=0) 

reported by Kumar and Mohan Rao (2003) 
 
 
in Eqs. (12), (13), (14), and (16)  

 tan 2
( 0)  tan 45

2qN eπ φ
α=

φ⎛ ⎞= ° +⎜ ⎟
⎝ ⎠

 (18) 

It can be seen in Eq. (13) that the accuracy of calculated 
values of ηb based on Hansen’s and Vesic’s solutions are not 
influenced by the values of gγ and gq, because both proposed gγ = 
gq as shown in Eqs. (15) and (17). 

The values of Nγq (α>0, b=0) for Zhu (2000) and Kumar and 
Mohan Rao (2003), as summarized in Table 2, are calculated 
using Eq. (11) and values of Nγ (α>0, b=0) and Nq (α>0, b=0) reported in 
the respective studies. Note that the present study is not intended 
to examine in-detail the background leading to the widely vari-
ated theoretical and/or empirical solutions of Nγ and Nγq provided 
by various methods. In stead, the present study focuses on the 
comparison of ‘ηb’ provided by various analytical and/or empiri-
cal methods. It is well-known that theoretical solutions of Nγ (for 
identical values of φ and α) can span a wide range of ±100% 
from the averaged theoretical values of Nγ obtained using various 
methods. This fact is exemplified in Fig. 4 and has also been 
discussed by Tatsuoka, et al., (1989) and Huang and Tatsuoka 
(1994). The essence of Table 2 is that theoretical solutions of Nγ 
for the level ground (α = 0) and that for α = 30° derived here are 
always close to the averaged values of Nγ obtained using various 
methods. It seems that values of Nγ(α=30°, b=B) and Nγ(α=30°, b=2B) ob-
tained here are somewhat greater than those obtained by other 
empirical solutions. The greater values of Nγ(α=30°, b=B) and Nγ(α=30°, 

b=2B) for about 25% ~ 30% compared to other solutions indicate 
that composed values of Nγq(α=30°, b=B) and Nγq(α=30°, b=2B) based on 
various empirical approaches are somewhat conservative. For the 
theoretical solutions provided in the first two columns of Table 2, 
the ones provided in the present study deviate from the averaged 
values within +7% and −20%. This is considered small when 
compared with the range of ± 100% for various theoretical solu-
tions as discussed previously. Figure 12 shows that the values of 

ηb calculated using the indirect approach, as shown in Eq. (13), 
and the direct approach as proposed herein are comparable for 
b/B ≤ 4, suggesting that conventional indirect approaches also 
work well as an alternative analytical approach.  

5. CONCLUSIONS 

In this study, a limit equilibrium method incorporated with 
Janbu’s slice method is used to evaluate the effect of setback on 
the ultimate bearing capacity of a surface footing placed near the 
shoulder of a slope. This method eliminates possible shortcom-
ings that may be associated with conventional approaches which 
employ overburden pressure and Terzaghi’s bearing capacity 
coefficient for surcharge, Nq, to indirectly evaluate the effect of 
setback. The analytical results show that the bearing capacity of 
the footing increases almost linearly with an increase in setback 
distance up to certain threshold values denoted by a dimen-
sionless setback-to-footing width ratio, (b/B)t. Beyond these 
threshold values, the ultimate bearing capacity remains constant 
like that of a footing placed on a semi-infinite level ground. The 
results show that the value of ‘(b/B)t’ is a linear function of the 
internal friction angle of the foundation soil (φ) regardless the 
value of slope angle (α) ranged between 0° and 35°. The results 
also show that the gradient (Sb), characterizing the linear rela-
tionship between the effect of setback (in terms of ηb) and the 
normalized setback (b/B), can be expressed as functions of φ and 
α. The correction factors, ηb which were obtained in the present 
study are comparable with those obtained in two previously 
documented analytical studies. It is also shown that an indirect 
approach which takes into account the effect of setback on the 
ultimate bearing capacity of footing by using equivalent sur-
charges on the slope surface also works well in the sense that the 
indirect approach examined herein generates comparable values 
of ηb as those provided by straightforward analytical solutions 
derived in the present study.  

APPENDIX A 
FORMULAS AND PROCEDURES FOR 
CALCULATING SEISMIC BEARING CAPACITY 
OF FOOTINGS ADJACENT TO THE SLOPE   

The soil mass confined by the slip lines shown in Fig. A-1 is 
divided into n vertical slices (width of slice, Bs = 0.1 m) with 
base inclinations αi (i = 1, ⋅⋅⋅⋅, n) in the present study. These 
slices are grouped into two categories, namely, slices subjected to 
the footing load, Pi and Qi, at their top surfaces and the slices 
without footing load at their top surfaces. The following assump-
tions are made.  
1. Assume inter-slice thrust heights to be 1/3 of the inter-slice 

heights and calculate θi for all slices (see Fig. A-1 for the defi-
nition of θi). 

2. The ultimate footing loads Pfi and Qfi are uniformly distributed 
on the surface of the slices located directly under the footing, 
i.e., Pf1 = Pf2 = ⋯ = Pfm = Pf, and Qf1 = Qf2 = ⋯ = Qfm = Qf (m: 
number of slices directly subjected to the footing load is ‘nf’; nf 
= 50 in the present study). 

3. Qf = Pf ⋅ tan β, β: angle of load inclination on the footing base. 
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Fig. A-1 Schematic figure of forces and boundary conditions 

used in the slice method 

According to: (1) the force equilibrium in horizontal and ver-
tical directions for slice Nos. 1 − n, (2) Mohr-Coulomb’s failure 
criterion, Si = (Sfi / Fs) = (Ni ⋅ tan φ) / Fs (assuming cohesionless soils 
and no pore water pressure; Fs: safety factor against shear failure; 

Fs = 1.0 in the present study), and (3) 
1

n

i n oE E E= −∑ , ultimate 

footing load on the surface of the slice, Pf and the differential be-
tween inter-slice forces, ΔEi (= Ei − Ei−1) can be obtained as: 
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= +i i iE A BΔ −   (A2) 

The ultimate bearing capacity (qu) and the bearing capacity 
coefficient (Nγ) can be obtained using: 
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q
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⋅
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2 uqN
Bγ

⋅=
γ ⋅

  (A4) 

in Eq. (A2),  

 = seci fi iA S ⋅ α   (A5) 
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in Eq. (A1), 

2sec ( ) tan sec
1 tan tan

i i i i i
fi

i

C W TD ⋅ α + − Δ ⋅ φ ⋅ α=
+ φ⋅ α

 (A8) 

2sec ( ) tan sec
1 tan tan

i i i i i i
i

i

C W P TD ⋅ α + + − Δ ⋅ φ ⋅ α=
+ φ⋅ α

 (A9) 

i i( ) tan  fi iG W T=  − Δ ⋅ α   (A10) 

i( ) tani i i i iG P W T Q= + − Δ ⋅ α +  (A11) 

tan tantan
1 tan tan

i
fi

i
H α  − φ= β +

+ φ⋅ α
 (A12) 

Taking the moment equilibrium about the center of the slice 
base yields the following equation: 

 
tan tan

2
i i i qii

i i i i i
s

E h Q hTT E E
B

−Δ ⋅ + ⋅Δ= ⋅ θ  − Δ ⋅ θ + +  

  (A13) 

Assuming that the width of slice is small, ΔTi → 0 and ΔEi 
→ 0, we can rewrite Eq. (A13) as: 

tan i qi
i i i

s

Q h
T E

B
⋅

= ⋅ θ +   (A14) 

In the present study, Eq. (A14) instead of Eq. (A13) is used. 
The computer algorithm for calculating ultimate footing 

load Pfi is as follows: 
1. Assume ΔTi = 0. 
2. Calculate the first approximated value of Pf using Eq. (A1). 
3. Calculate ΔEi and Ei (i = 1, 2, ⋯, n) using Eq. (A2)  

4. Calculate Ti (i = 1, 2, ⋯, n) using Eq. (A14). 

5. Calculate an improved value of Pf using Eq. (A1). 
6. Repeat Steps (4) to (6) until the convergence of Pf is achieved 

(the convergence criterion for Pf was |  New Pf − Old Pf  | / (Old 
Pf ) ≤ 0.3% in the present study.) 

NOTATIONS  

 Ai: term used in Eq. (A5) (N/m) 
 B: width of footing (m) 
 b: distance of setback (m) 
 Bs: width of slice (m) 
 Bi: term used in Eq. (A6) (N/m) 
(b/B)t: threshold value of b/B that tranform from a near-slope 

bearing capacity into a level-ground bearing capacity (di-
mensionless) 

 Ci: Cohesive shear resistance for slice No. i (N/m) 
 Df: virtual depth of footing embedment (m) 
 Dfi: term used in Eq. (A9) (N/m) 
 Di: term used in Eq. (A8) (N/m) 

 ΔEi: differential value of Ei (N/m) 
Ei (i = 0 ... n): horizontal interslice force (N/m) 
 Gfi: term used in Eq. (A10) (N/m) 
 Gi: term used in (A11) (N/m) 
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 gq: correction factor on Nq (α=0) for the effect of sloped ground 
(dimensionless) 

 gγ: correction factor on Nγ (α=0) for the effect of sloped ground 
(dimensionless) 

 Hfi: term used in Eq. (A12) (N/m) 
 hi: arm of rotation for horizontal inter-slice force (m) 
 hqi: arm of rotation for horizontal seismic force at the top of slice 

(m) 
 nf: number of slices directly under the footing  
 Ni: normal force on the slice base (N/m)  
 Nq: Terzaghi’s bearing capacity coefficient for footing embed-

ment or surcharge (dimensionless) 

 Nγ: Terzaghi’s bearing capacity coefficient for self-weight of 
soils (dimensionless) 

Nq (α>0, b=0): bearing capacity coefficient due to surcharge for a 
footing adjacent to the slope with a slope angle α 
(dimensionless) 

Nγ(α=0): Nγ for a footing placed on a horizontal ground (di-
mensionless) 

Nq(α=0): Nq for a footing placed on a horizontal ground (di-
mensionless) 

Nγ (α>0, b=0): Nγ for a footing adjacent to the slope with a slope 
angle α (dimensionless) 

Nγ (α>0, b>0): Nγ for a footing placed on the crest of a slope with a 
setback (b > 0) (dimensionless) 

Nγq (α>0): bearing capacity coefficient of footing adjacent to the 
slope (b = 0, α > 0), taking into account the com-
bined effect of self-weight and surcharge of soils 
(dimensionless) 

Pfi (i = 1 ... m): footing load on the top of slice No. i; m : number 
of slices directly subjected to the footing load 
(N/m) 

 Pi: vertical load at the top of slice No. i (N/m)  
 Pf: total footing load (N/m) 

Qfi (i = 1 ... m): horizontal force excerted by the footing (N/m) 
 Qi: horizontal load at the top of slice No. i (N/m) 
 qu: Ultimate bearing capacity of footings (N/m2) 
qu(α>0, b=0): ultimate bearing capacity for a footing adjacent to 

the slope with a given slope angle, α (N/m2) 
 r: radius of a logrithmic spiral from the toe of footing (m) 
 ro: radius of a logrithmic spiral at the interface between the 

active wedge and the transitional zone (m) 
 Sb: gradient of the linear ηb vs. b/B relationship (dimensionless) 
Sfi (i = 1 ... m): shear force at the base of slice No. i directly sub-

jected to the footing load (N/m) 
 Si: shear force at the base of slice No. i (N/m) 
 ΔTi: differential value of Ti (N/m) 

 Wi: self-weight of slice No. i (N/m) 
 α: slope angle (degree) 
 αi: base inclination for slice No, i (degree) 
 β: footing load inclination (degree) 
 φ: internal friction angle of soils (degree) 
 γ: unit weight of soils (kN/m3) 
 η: parameter dictating the curvature of a log-spiral (degree) 
 ηb: correction factor on Nγ for a footing setback (dimensionless) 
 μ: angle between ro and r for a log-spiral determing the transi-

tional zone bounded by a log-spiral (radian) 
 θi: thrust line inclination for slice No. i (degree) 
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