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ABSTRACT 

In this research, a new method is proposed to update reliability based on data recorded by instruments and sensors installed 
on geotechnical systems. The method is founded on Bayesian analysis and Monte Carlo simulation and is capable of estimating 
the functional relationship between the updated failure probability and the monitoring value. It is shown that as long as the prob-
ability distribution of the uncertainties and the mathematical model of the target system are given, this relationship can be ob-
tained prior to the monitoring process. This new method may be applied to safety monitoring of in-construction geotechnical sys-
tems and monitoring of existing geotechnical systems. 
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1. INTRODUCTION 

Uncertainties are abundant in geotechnical engineering. 
Major sources of these uncertainties may include uncertainties of 
geo-material properties, spatial variability, model uncertainties, 
and measurement uncertainties. Reliability analyses (Benjamin 
and Cornell, 1970; Madsen, et al. 1986; Thoft-Christensen and 
Murotsu, 1986; Ang and Tang, 1984) are the main tool of quan-
tifying these uncertainties. 

However, it is sometimes the case that the amount of uncer-
tainties associated with geotechnical systems is so significant that 
the resulting failure probability is quite large. For one of the ex-
amples in this paper (a deep excavation case study), where the 
probability distributions of the uncertainties are reasonably cho-
sen according to the laboratory test results and previous research, 
the probability that the maximum ground settlement is greater 
than 10 cm is as high as 30% (note that this probability should be 
interpreted as the degree of belief, rather than the actual relative 
frequency of failure). Such a high failure probability is usually 
not acceptable. Similar issues may exist in various geotechnical 
systems because they are subjected to a large amount of uncer-
tainties. How to reduce the uncertainties in geotechnical systems 
can be an important research topic. 

There are at least two ways of reducing geotechnical uncer-
tainties: (a) obtain new information from the systems by moni-
toring them and (b) conduct more in-situ tests to reduce the un-
certainties of the ground. This research focuses on the former 
approach: how to reduce uncertainties and update reliability by 
using monitoring data. Please note that it is usually not easy to 
measure the quantities that directly define failure. For instance, in 
a deep excavation problem, the failure is, for example, defined as 
the maximum ground settlement exceeding certain threshold.  

However, it is not possible to measure ground settlement if there 
are adjacent buildings nearby the site. On the other hand, in most 
deep excavation cases, deformation of diaphragm walls is meas-
ured, and the measured deformation contains certain amount of 
information about the ground settlement. Therefore, it is possible 
to reduce uncertainties in ground settlement by using the wall 
deformation data, i.e., to update reliability. 

Despite its importance, research focusing on updating reli-
ability is rare in civil engineering literature: Beck and Au (2002) 
proposed adaptive Metropolis-Hastings algorithm to update reli-
ability. A limitation of their approach is that the dimension of 
uncertainties cannot be too high. Ching and Beck (2006) pro-
posed a method based on an efficient importance sampling tech-
nique developed by Au and Beck (2001) to update reliability of 
linear systems. Their approach is not constrained in the uncer-
tainty dimension, but it can be only applied to linear systems with 
Gaussian uncertainties. 

In this research, a new method is proposed to update reli-
ability of general systems by using scalar monitoring data with-
out the dimensionality and linearity constraints. This new method 
is based on Bayesian analysis (Ang and Tang, 1984; Gelman, et 
al. 1995) and Subset Simulation (SubSim), Monte Carlo simula-
tion and update reliability of an instrumented system by using its 
monitoring data. In fact, as long as the probability distribution of 
the uncertainties and the mathematical model of the target system 
are given, the functional relationship between the updated failure 
probability and the scalar monitoring value can be obtained prior 
to the monitoring process. This means in real applications, it is 
not necessary to conduct the new algorithm in an online manner. 
Instead, the relationship can be calculated a priori so that the 
reliability update can be achieved right away once the monitoring 
data is obtained. It is expected that the new approach is useful for 
safety monitoring of in-construction geotechnical systems and 
monitoring of existing geotechnical systems. 

The structure of the paper is as follows: In Section 2, the 
problem of updating reliability is formally defined. In Section 3, 
the algorithm of the new approach is described. In Section 4, 
examples are used to demonstrate the new approach, and in Sec-
tion 5, discussions and conclusions will be given. 
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2. PROBLEM DEFINITION 

The goal of regular reliability analyses is to estimate failure 
probability given the probability distribution of the uncertainties 
in the target system and the mathematical model of the system, 
i.e., compute P (F | M), where F denotes the failure event, and M 
contains the mathematical model as well as the assumed prob-
ability distribution of the uncertainties. When new information ϕ 
is available, it is essential to incorporate it to reduce the uncer-
tainties (i.e., update reliability). This is especially the case if the 
new information ϕ is the direct measurement on the target geo-
technical system: this measurement directly reflects system status 
and may contain much more information than usual field data. 
Therefore, it is desirable to develop a methodology to update 
reliability based on these measurements, i.e., compute P (F | ϕ, M). 
In this paper, ϕ is assumed to be a scalar. For vectoral ϕ, the 
problem of estimating  P (F | ϕ, M) is much more difficult, so it 
is left as future research. 

A naive way of achieving the aforementioned task is as fol-
lows: Employ brute-force Monte Carlo simulation (MCS) to 
draw many samples of uncertain variables, each sample corre-
sponds to a monitoring value. Suppose that there are m samples 
whose monitoring values are identical to the actual monitoring 
value and that among the m samples, there are n samples satisfy-
ing the prescribed failure condition (called the failure samples). 
The failure probability can therefore be updated as n/m. However, 
this approach is infeasible in practice since the chance that the 
sampled monitoring value is equal to the actual one is zero, so 
obtaining such m samples requires infinite amount of computa-
tional time. 

Nevertheless, according to the Bayes’ rule, we know 

( | , ) ( | )( | , )
( | )

f F M P F MP F M
f M

ϕϕ =
ϕ

 (1) 

where P (F | ϕ, M) is the updated failure probability; f (ϕ | F, M) is 
the probability density function (PDF) of the monitoring value 
conditioned on the failure event; P (F | M) is the failure probabil-
ity without the monitoring information, called the prior failure 
probability; and f (ϕ | M) is the prior PDF of the monitoring value. 
For our purpose, the goal is to find P (F | ϕ, M). According to (1), 
if f (ϕ | F, M), P (F | M) and f (ϕ | M) are all available, P (F | ϕ, M) 
can be readily obtained. In the following section, the detailed 
descriptions for estimating f (ϕ | F, M), P (F | M) and f (ϕ | M) are 
provided. For notational simplicity, the symbol M in the condi-
tions will be dropped from all the following discussion. Readers 
should keep in mind that all results are conditioned on the as-
sumed model M. 

3. ESTIMATION OF P(F), f (ϕ) AND f (ϕ | F) 

In principle, P (F) can be estimated by MCS. In the process, 
samples distributed as f (ϕ) and f (ϕ | F) are obtained. Based on the 
samples, the unknown PDFs f (ϕ) and f (ϕ | F) can be estimated 
with the maximum entropy theory (Jaynes, 1957). The detailed 
procedures are described in the following. 

3.1 Estimation of P(F) 
The failure probability P (F) can be estimated with any reli-

ability analysis method. In this paper, MCS is employed due to 
its simplicity. Let Z denote the uncertain variables of the target 
system. First, N sets of Z samples { ˆ : 1...iZ i N= } are drawn 
from the prescribed PDF of Z. According to the Law of Large 
Number, we have 

( )
1

1 ˆ( ) 1
N

i

i
P F R Z

N =

⎡ ⎤≈ >⎣ ⎦∑   (2) 

where R denotes the limit-state function that defines failure event 
F, i.e., the failure event is defined as R[Z] > 1. 

Please note that in the process of MCS, samples distributed 
as f (ϕ | F) and f (ϕ | F 

C) can be obtained (F 
C denotes the 

non-failure event): Corresponding to the N sample sets 
ˆ{ : 1 ... }iZ i N=  are the N samples of the monitoring value 
ˆ{ : 1... }i i Nϕ = . Assuming that among the N samples, there are 

NF failure samples, i.e., samples satisfying ˆ( ) 1iR Z > , so the 
corresponding ϕ samples are distributed as f (ϕ | F). On the other 
hand, there are N-NF non-failure samples, so the corresponding ϕ 
samples are distributed as f (ϕ | F 

C). With the samples, the un-
known PDFs f (ϕ) and f (ϕ | F) can be estimated by using the 
maximum entropy theory, as described in the next section. 

3.2 Estimation of f (ϕ) and f (ϕ | F):  
Maximum Entropy Theory 

The entropy of a PDF quantifies the degree of surprise, i.e., 
the information content of the PDF. With the limited information 
obtained from the samples of an unknown PDF, it is desirable to 
estimate the PDF based on the information. One way of achiev-
ing so is to find the PDF whose entropy is maximized subjected 
to the information constraint. In this study, the first four sample 
moments of the samples are calculated and are taken as the con-
densed information about the unknown PDF. The maximum en-
tropy PDF is then calculated to maximize its entropy subjected to 
the moment constraints. 

The maximum entropy theory is employed to estimate f (ϕ | F) 
and f (ϕ | F 

C) based on the sample moments of the samples ob-
tained from f (ϕ | F) and f (ϕ | F 

C), i.e., to solve the following opti-
mization problem: 

( )
max log ( ) ( )

U

g L
g g d

⋅

⎛ ⎞
− ϕ ⋅ ϕ ϕ⎜ ⎟⎜ ⎟
⎝ ⎠
∫  

subjected to ( ) 1
U

L
g dϕ ϕ =∫  ,  ( ) , 1 4

U
i

i
L

g d iϕ ϕ ϕ = μ =∫ …  

  (3) 

Please note that in the optimization problem, the variable is 
the entire g(ϕ) function, where g(ϕ) can be either f (ϕ | F) or 
f (ϕ | F 

C); L and U are the upper and lower bounds, respectively, 
of the monitoring value ϕ (if they exist; otherwise, they are −∞ 

and ∞); the quantity  
 log ( ) ( ) U
L g g d− ϕ ⋅ ϕ ϕ∫  is the entropy of 

g(ϕ), and {μk: k = 1 … 4} are the first four sample moments: 

1

1 ˆ( )
N

i k
k

iN =
μ = ϕ∑   (4) 

where ˆ{ : 1... }i i Nϕ =  are the samples of ϕ. 
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When the maximum entropy theory is implemented, only 
the first four moments are considered for the following reasons: 
(a) the first four moments roughly contain the most important 
information of a PDF, i.e., mean, variance, skewness and kurto-
sis; and (b) it is found that if higher moment information is con-
sidered (higher than the fourth moment), the maximum entropy 
algorithm provided in the appendix may have convergence prob-
lems due to numerical inaccuracy. L and U are usually taken to 
be 0 and infinity, respectively, since many monitoring values are 
positive real numbers. 

To solve the optimization problem, let us define the Lagran-
gian function: 

0( , ) log ( ) ( ) ( ) 1
U U

L L
L g g g d g d

⎡ ⎤
λ = ϕ ⋅ ϕ ϕ + λ ϕ ϕ −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

4

1
( ) 

U
i

i i
i L

g d
=

⎡ ⎤
+ λ ϕ ϕ ϕ − μ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫  (5) 

where λ0, λ1, … and λ4 are the Lagrangian parameters. The opti-
mal solution of the problem must satisfy the so-called saddle 
point condition, i.e., 

4

0

( , ) 0 1 log ( )
( )

i
i

i

L g g
g =

∂ λ = = + ϕ + λ ϕ
∂ ϕ ∑  (6) 

It is easy to show that the solution must have the following form: 

4
02 3 4

0 1 2 3 4 1(1 )( )
i

i
ig e e =

−λ − λ ϕ
− +λ +λ ϕ+λ ϕ +λ ϕ +λ ϕ ∑

ϕ = =  (7) 

For convenience, the constant 1 has been absorbed into the λ0 
parameters in the above equation. Moreover, the Lagrangian pa-
rameters λ0, λ1, … and λ4 must satisfy 

( ) 1 ,
U

L
g dϕ ϕ =∫   ( ) 1 4

U
i

i
L

g d iϕ ϕ ϕ = μ =∫ …  (8) 

In (8), there are five unknowns with five nonlinear equations. 
The unknown Lagrangian parameters can be solved with the 
Newton method described in the appendix. Once the optimal 
Lagrangian parameters are found, plugging them into (7) will 
give us our maximum entropy estimate for the target PDF. 

Since samples distributed as f (ϕ | F) and f (ϕ | F 
C) are ob-

tained in MCS, f (ϕ | F) and f (ϕ | F 
C) can then be estimated by 

using the maximum entropy theory. Furthermore, f (ϕ) can be 
estimated with the following equation: 

( ) ( ) ( | ) ( ) ( | )C Cf P F f F P F f Fϕ = × ϕ + × ϕ  (9) 

where P(F) has been estimated by MCS, and P(F 
C) = 1 − P(F). 

Please note that the approach proposed in this research for 
reliability updating is based on MCS and the maximum entropy 
theory. The former is applicable to general linear or nonlinear 
systems whose uncertainty dimension can be arbitrarily large, 
while the latter is also applicable to general PDF. Therefore, the 
applicability of the proposed approach is quite broad, especially 
for geotechnical systems, which are usually quite nonlinear and 
uncertainty dimensionality is quite large. 

Besides, with the proposed approach, the functional rela-
tionship between the updated failure probability and the scalar 

monitoring value can be obtained prior to the monitoring process 
as long as the probability distribution of the uncertainties is given. 
This means in real applications, it is not necessary to conduct a 
new analysis in an online manner. Instead, the relationship can be 
calculated a priori so that the reliability update can be achieved 
right away once the monitoring data is obtained. Let us take the 
first case study in Section 4 as an example, where the monitoring 
value is the height of the water table in the slope, and failure is 
defined as the sliding of the slope. Using our method, it is possi-
ble to estimate the functional relationship between the updated 
failure probability and the water table height (see the left-hand-  
side figure in Fig. 1). Suppose the height is monitored, and the 
daily data is shown in the upper-right figure in Fig. 1, we can use 
the functional relationship to compute the updated daily failure 
probability of the slope, as shown in the lower-right plot in Fig. 1. 
The lower-right plot has significant application: based on the plot, 
decisions can be made to maintain the slope to prevent possible 
failure. 
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Fig. 1 An imaginary infinite slope example. The left-hand-side 

plot is the estimated P (F | ϕ) function. The upper-right 
plot is the monitoring value, while the lower-right plot is 
the resulting failure probability time history. 

4. EXAMPLES 

Two examples are selected to demonstrate the use of the 
new method. The first example is an infinite slope, where the 
monitoring value is the height of the water table, and failure is 
defined as the sliding of the slope. The second example is a real 
case study, a deep excavation problem, where the monitoring 
value is the maximum diaphragm wall deformation, and failure is 
defined as the exceedance of the maximum ground settlement 
over a prescribed threshold. There are some common features for 
the two examples: (a) the uncertainties are so significant that the 
failure probability is quite large when no monitoring data is 
available; (b) the physical quantities that directly define failure 
cannot be monitored easily, but the monitored value contains 
certain information about those quantities. So the knowledge of 
the monitoring value is helpful in reducing the uncertainties as-
sociated with the defined failure. 
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4.1 Infinite Slope 
In this hypothetical example, let us consider the infinite 

slope in Fig. 2, where H is the thickness of the soil layer, β is the 
slope angle, h is the height of the water table, γ is the unit weight 
of the soil, γsat is unit weight of the saturated soil, and φ is the 
friction angle of the cohesiveless soil. The failure event is de-
fined as the sliding of the slope along the soil-rock interface, i.e., 
downward sliding force is greater than the shear resistance along 
the interface. Therefore, the limit-state function is 

2

( ) sin( )cos( )
( )

( ) ( ) cos ( ) tan( )
sat

sat

h H h
R Z

h H h
γ + γ − β β⎡ ⎤⎣ ⎦=

γ − γ + γ − β φ⎡ ⎤⎣ ⎦
 (10) 

The height of the water table is uncertain and is uniformly dis-
tributed over the [0, H] interval, i.e., h = H⋅U, where U is uni-
formly distributed over the [0, 1] interval. For this example, Z 
contains all uncertainties, including γ, γsat, H, φ, U. It is assumed 
that the uncertain variables γ, γsat, H, φ are normally distributed 
with mean equal to [17 kN / m3, 10 m, 19 kN / m3, 35°] and stan-
dard deviation equal to [1.5 kN / m3, 3 m, 1.5 kN / m3, 3°]. The 
slope angle β is known and is equal to 20°. The monitoring value 
ϕ is the height of the water table h. 

In order to estimate P (F | ϕ), MCS is employed to estimate 
P(F); the result shows that P(F) is roughly 50%, indicating that 
the uncertainties are significant. Therefore, it is desirable to up-
date the failure probability with the monitoring data so that the 
uncertainties can be reduced. During MCS, samples distributed 
as f (ϕ | F) and f (ϕ | F 

C) are obtained, whose histograms are shown 
in Fig. 3. With the samples together with the maximum entropy 
theory, the unknown PDF f (ϕ | F) and f (ϕ | F 

C) are estimated and 
are plotted in Fig. 3. With the Bayes’ rule in (1) and the relation-
ship in (8), the estimate for P (F | ϕ) is obtained. The left-hand- 
side plot in Fig. 4 shows the analysis result of the proposed ap-
proach with a single MCS run with sample number N = 1000, 
which shows that the updated failure probability increases with 
increasing height of water table. The right-hand-side plot shows 
the average and 95% confidence interval of the results from in-
dependent 500 MCS runs. 

To examine the analysis results, let us consider the follow-
ing verifying procedure based on MCS: Employ MCS to generate 
numerous samples of Z, each sample corresponds to a monitoring 
value ϕ. Suppose the actual monitoring value is ϕ̂ , the samples 
whose monitoring values are close to ϕ̂  (in the range of 
ˆ 0.1ϕ ± ) are kept. Assume that there are m such samples and 

among them, H samples satisfy the failure definition. Then 
( )ˆ|P F ϕ  can be roughly estimated as H/m. Figure 4 shows the 

examining results when ϕ̂  is 1, 2, … and 10 m (including the 
estimate and 95% confidence interval). Comparisons between the 
analysis and examining results indicate that the proposed 
method provides consistent P (F | ϕ) estimates. Nevertheless, the 
proposed approach requires much less computation than the ex-
amining MCS approach. 

4.2 Deep Excavation 

This real case of deep excavation is taken from Ou, et al. 
(1998). The site was located in the Taipei City in Taiwan. The 
diaphragm wall is 35 m deep and 0.9 m in thickness. The excava-
tion  process  is  divided  into  seven  stages  shown  in  Fig. 5.    
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Fig. 2  An illustration of the infinite slope 

 

Fig. 3 The histograms of the f (ϕ | F) (left) and f (ϕ | F 
C) (right) 

samples and the corresponding maximum entropy esti-
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C) (Example 1) 
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Fig. 4 Example 1 analysis results. The left-hand-side plot is the 
result from a single MCS run, while the right-hand-side 
plot compiles the results from 500 independent MCS 
runs. 
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The final excavation depth is 19.7 m. The excavation site mainly 
consists of three clayey soil layers and three sandy soil layers 
(the soil layering details can be found in Tables 1 and 2). Finite 
element analyses (the mesh is shown in Fig. 6, after Ou, et al. 
(1998)) are conducted to simulate the excavation process of this 
case study. Only the final stage of the excavation is analyzed and 
discussed. 

In the finite element analysis, the modified hyperbolic 
model developed by Hsieh and Ou (1997) is adopted for the 
clayey soils, while the traditional hyperbolic model developed by 
Duncan and Chang (1970) is taken for sandy soils. The model 
developed by Hsieh and Ou (1997) is slightly different from 
Duncan and Chang’s model: the stress-strain relationship is still 
hyperbolic:  

1 3

3

1 [1 sin( )]
( ) 2 cos( ) 2 sin( )f

e
R

E c

εσ − σ = ε − φ+
ε φ + σ φ

 (11) 

where σ1 and σ3 are the principal stresses; ε is the axial strain; c 
and φ are effective cohesion and friction angle, respectively; Rf is 
called the failure ratio; Ee(ε) is the elastic modulus. The major 
difference in Hsieh and Ou’s model is that Ee(ε) depending on 
the axial strain according to the following relationship:  

3
3

3

3

10 % 10 %
( ) ( 10 %)

10 %

i

e uc

uc i

uc

E
E s a b

s E
s

−
−

−

−

⎧ ε −− ε >⎪ε ⎪ + ε −= ⎨
⎪ ε ≤⎪⎩

 (12) 

3

a

n

i aE KP
P

⎛ ⎞σ= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (13) 

where Ei is the initial elastic modulus; Pa = 101.4 kPa; K is the 
modulus parameter; n is the modulus exponent; suc is the 
undrained shear strength; a and b are parameters in the Ee − ε 
relationship. This strain-dependent modulus model is based on 
the observations made by Wood (1990) and Jardine (1992): the 
small-strain modulus of clayey soils is considerably higher than 
that in common range. Hsieh and Ou (1997; 1998) found that the 
modified model outperforms the original model in predicting 
ground settlement in many deep excavation problems.  

 
Fig. 5 An illustration of the deep excavation case study 

(after Ou, et al. (1998)) 

Table 1 Prior PDF parameters for the clayey soils in Example 3 
(mean values from Ou, et al. (1998)) 

Normal distribution 
Total unit weight (kN/m3)  

Depth 
(m) 

Soil 
type 

mean c.o.v.
 

0.0 ∼ 5.6 CL 18.25 7% 
8.0 ∼ 33.0 CL 18.93 7% 
35.0 ∼ 37.5 CL 18.15 7% 

Table 2 Prior PDF parameters for the sandy soils in Example 3 
(mean values from Ou, et al. (1998)) 

Normal distribution Lognormal  
distribution 

Total unit weight 
(kN/m3) 

φ 
(°) 

K 
(MPa) 

Depth 
(m) 

Soil
type

mean c.o.v
 

mean c.o.v
 

mean c.o.v
 

5.6 ∼ 8.0 SM 18.93 7% 31 10% 76 40% 
33.0 ∼ 35.0 SM 19.62 7% 31 10% 254 40% 
37.5∼ 46.0 SM 19.62 7% 32 10% 254 40% 

 
Fig. 6  The finite element mesh used in Example 2 (after Ou, et al. (1998)) 
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The uncertainties associated with the real case study include 
the properties of the sandy and clayey soils, locations of water 
tables and the forces provided by the brace systems. In selecting 
the PDF of the uncertainties, most of the mean values of the un-
certain soil properties are taken to be equal to the laboratory test 
results from Ou, et al. (1998) (see Tables 1 and 2), while c.o.v.s 
are chosen based on the recommendations made by Phoon (1995). 
All uncertainties are assumed to be independent. The failure ratio 
Rf of the sandy and clayey soils are taken to be uniformly distrib-
uted over [0.8, 0.9], and the modulus exponent n to be uniformly 
distributed over [0.4, 1.0]. The Poisson ratios ν of all sandy soils 
are uniformly distributed over [0.2, 0.4], while those of all clayey 
soils are equal to 0.49. Cohesion c of all sandy soils are taken to 
be 0. According to Ou, et al.’s laboratory test results, Ei / suc of 
the clayey soils is roughly among 1800 and 2200, so we assume    
Ei / suc is uniformly distributed over [1800, 2200]. For the clayey 
soil layers, /uc vs ′σ  is assumed to be normally distributed with 
mean value described by the following equation:  

0.9

0.28 3.5
3

0.28  3.5

uc

v

z zs
z

z

⎧ ⎛ ⎞ ≥⎪ ⎜ ⎟= −⎨ ⎝ ⎠′σ ⎪ <⎩

 (14)  

where z is the depth, while the c.o.v. is set to be 20% (estimated 
based on the results in Ladd and Foote (1974)).  

In Fig. 7, the laboratory test results from Ou, et al. (1998) 
regarding the small-strain modulus are shown as “ ” in the figure, 
while the solid line describe the relationship in (12) with a and b 
set to be 6 × 10−8 and 1520, respectively. Therefore, Ee (ε) / suc is 
assumed to be normally distributed, its mean value is described 
by the solid line in Fig. 7, and c.o.v. is roughly estimated to be 
10%. Since there are more than one impermeable layer in the 
case study, two water tables are present, whose depths are    
uncertain and are uniformly distributed over [2 m, 3 m] and    
[14 m, 19 m]. Finally, the forces provided by the three supports 
are uncertain and uniformly distributed over [20000 kN/m,   
22000 kN/m], [10000 kN/m, 12000 kN/m], and [5000 kN/m, 
5400 kN/m] from bottom to top. For most uncertainties, their 
assumed distribution types, mean values, and c.o.v.s are shown in 
Tables 1 and 2. 

For this case study, the deformation of the diaphragm wall is 
monitored, and the monitoring value ϕ is chosen to be the maxi-
mum lateral deformation of the wall. Several failure definitions 
are considered: the maximum ground settlement is greater than 5, 
10, 15, 20, 25, and 30 cm, and the corresponding failure prob-
abilities (without the monitoring data) estimated from MCS are 
roughly 80%, 30%, 10%, 6%, 5%, and 4%, respectively. In Fig. 8, 
the histograms of the samples distributed as f (ϕ | F) and f (ϕ | F 

C) 
are shown, using the failure threshold of 10cm as an example, 
and the estimated f (ϕ | F) and f (ϕ | F 

C) based on the maximum 
entropy theory are also shown in the same plot. With (1) and (8), 
P (F | ϕ) for various failure thresholds can be estimated, shown in 
Fig. 9. Please note that in order to obtain the six curves in the 
figure, only a single N = 2000 MCS run is needed. From Fig. 9, it 
is obvious that failure probability grows with increasing moni-
toring values. The finite element analysis is quite time-     
consuming, so the confidence intervals are not computed, nor are 
the examining results.  

Note that the results shown in Fig. 9 can only apply to the 

final excavation stage. For the earlier six stages of the excavation, 
the relationship between the updated failure probability and the 
maximum wall deformation will be different. Moreover, the re-
sults are only for this specific site. For other sites, the relation-
ship between the updated failure probability and the maximum 
wall deformation will also be different. 
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Fig. 7 Ee (ε) / suc  v.s. ε relationship. The dots are obtained from 

the laboratory tests conducted by Ou, et al. (1998), and 
the solid line is the fit with (12), where a and b are taken 
to be 6 × 10−8 and 1520, respectively 

 
Fig. 8 The histograms of the f (ϕ | F) (left) and f (ϕ | F 

C) (right) 
samples and the corresponding maximum entropy esti-
mates of f (ϕ | F) and f (ϕ | F 

C) (Example 2) 
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Fig. 9  Example 2 analysis results based on a single N = 2000 
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5. DISCUSSIONS AND CONCLUSIONS 

A new method of updating reliability of geotechnical sys-
tems is proposed in this paper. Geotechnical systems are usually 
very uncertain due to the fact that its materials, soils and rocks, 
are buried in the ground. The consequence is that in some cases, 
the failure probability can be unacceptably large. The proposed 
method is capable of reducing the uncertainties by using new 
information, i.e., scalar monitoring data ϕ from the target system, 
to update the failure probability. It is based on simple Monte 
Carlo simulation and the maximum entropy theory, therefore, the 
methodology can be applied to general systems with high dimen-
sional uncertainties. Moreover, the functional relationship be-
tween the updated failure probability and the monitoring value 
can be obtained prior to the monitoring process. This means in 
real applications, it is not necessary to conduct a new analysis in 
an online manner. 

Two examples are studied in the paper to demonstrate the 
use of the new method. Between them, the results from one ex-
ample are verified by crude Monte Carlo simulation. The verifi-
cation shows that the new method produces consistent results. 
Nevertheless, the proposed approach requires much less compu-
tation than the examining MCS approach. 

There are several major limitations of the new method: (a) 
because Monte Carlo simulation is employed, when very small 
failure probability is of interest, the new method is not efficient; 
(b) for the current setting of the new method, the monitoring 
value is a scalar. However, in real situation, there are usually 
many monitoring values. Let us take the deep excavation case as 
an example, the monitoring values include the entire wall defor-
mation profile. When implementing the new method, the entire 
profile is converted into a single index, the maximum wall de-
formation. How to choose this conversion so that the correlation 
between the chosen single index and the failure event is maxi-
mized is a future research topic. 
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APPENDIX 
MAXIMUM ENTROPY DENSITY ESTIMATION 

This appendix describes a procedure of estimating PDF 
based on the maximum entropy theory given the sample mo-
ments of the PDF. We only discuss the four-moment maximum 
entropy approximation in this appendix. As discussed in the main 
text, the resulting optimization problem subjected to moment 
constraints is as following: 

( )
max log ( ) ( )

U

g L
g g d

⋅

⎛ ⎞
− ϕ ⋅ ϕ ϕ⎜ ⎟⎜ ⎟
⎝ ⎠
∫  

subjected to ( ) 1
U

L
g dϕ ϕ =∫  ,  ( ) 1 4

U
i

i
L

g d iϕ ϕ ϕ = μ =∫ …  

  (15) 

and the optimal solution has the following form: 
4

0
1( )

i
i

ig e =
−λ − λ ϕ∑

ϕ =   (16) 

where λ0, λ1, …, and λ4 must satisfy 

( ) 1
U

L
g dϕ ϕ =∫  ,  ( ) 1 4

U
i

i
L

g d iϕ ϕ ϕ = μ =∫ …  (17) 

According to the above five nonlinear equations, the goal is to 
determine the five unknowns λ0, λ1, …, and λ4. 

The Newton method is employed to solve the five unknowns. 
For notational simplicity, let us denote 

4

0( ) 0 4
i

i
ii

im e d i=
− λ ϕ∑

λ = ϕ ⋅ ϕ =∫ …  (18) 
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where λ encompasses λ0, λ1, λ2, λ3, λ4. The original five equa-
tions can be written as 

1

2 1

3 2

4 3

5 4

( ) 1
( )

( ) ( )
( )
( )

m
m

m m
m
m
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λ ≡ = ≡ μλ μ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥λ μ⎢ ⎥ ⎢ ⎥

λ μ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (19) 

and the corresponding Newton algorithm is 

1( 1) ( ) ( ) ( )( ) ( )i i i im m
−+ ⎡ ⎤ ⎡ ⎤λ = λ + ∇ λ μ − λ⎣ ⎦ ⎣ ⎦  (20) 
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The integral in the above equation can be calculated by using any 
numerical integration technique, e.g., Gauss quadrature. Note 
−∇m(λ) is always a positive definite matrix, so the solution of λ 

is unique. Plugging the solution back to 
4

0
1( )

i
i

ig e =
−λ − λ ϕ∑

ϕ =  will 
give us the maximum entropy estimation of the target PDF. 

 


