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ABSTRACT 

One distinctive feature of geotechnical engineering is site uniqueness or site-specificity. However, there is no data-driven 
method to quantify site uniqueness. The corollary is that it is not possible to identify “similar” sites from big indirect data (BID) 
automatically and no method to combine sparse site-specific data with big indirect data to produce a quasi-site-specific model that 
is less biased compared to a generic model and less imprecise compared to a site-specific model. This “site recognition” challenge 
is difficult because site-specific data is MUSIC-X (Multivariate, Uncertain and Unique, Sparse, Incomplete, and potentially 
Corrupted with “X” denoting the spatial/temporal dimension). This paper presents the application of four data-driven methods 
(hybridization, hierarchical Bayesian model, record similarity method, site similarity method) to construct a quasi-site-specific 
transformation model between the undrained shear strength and normalized cone tip resistance. The similarity methods are 
“explainable”, because a list of “similar” sites can be generated explicitly for inspection by the engineer. The effect of extrapolating 
the quasi-site-specific model beyond the range of the training dataset is also studied by comparing the performance of these models 
under routine validation (validation dataset is contained within the training dataset) and under external validation (validation dataset 
lies outside the training dataset). The hierarchical Bayesian model appears to be the best performing method thus far, but it suffers 
from a lack of “explainability”. More research is needed to: (1) ascertain the number and/or type of soil properties needed to identify 
“similar” sites more robustly in the sense of producing more clustered results in existing soil classification charts (e.g., Casagrande 
plasticity chart, Robertson CPT-based soil behavior type classification system) and/or producing the most accurate quasi-site-
specific model, (2) understand the bias and precision of making inferences beyond the range of the training dataset, and (3) clarify 
the trade-off between explainability and inference (bias and precision). 
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1.  INTRODUCTION 
Site characterization is a cornerstone of geotechnical and rock 

engineering. “Data-driven site characterization” (DDSC) refers to 
any site characterization methodology that relies solely on meas-
ured data, both site-specific data collected for the current project 
and existing data of any type collected from past stages of the same 
project or past projects at the same site, neighboring sites, or be-
yond. Phoon et al. (2022a) outlined three challenges in DDSC: (1) 
ugly data, (2) site recognition, and (3) stratification. “Ugly” refers 
to the attributes of actual data that present significant difficulties 
to classical statistics. The most well-known attributes in geotech-
nical practice are sparsity (not enough data and/or measurements 
separated wide apart) and spatial variability (data are spatially cor-
related). Another well-known attribute is quality. Phoon (2020) ar-
gued that the jury is still out on many important questions pertain-
ing to the value of quality to decision making: “Do we collect only 
high quality data that are limited in quantity or only lower quality 
data in larger quantity? Do we combine them? When shouldn’t 
they be combined?”  

The conventional wisdom is that statistics is not applicable 

based on the sparse attribute alone. Engineers commonly observed 
that data are insufficient for probabilistic analysis. For example, 
Schuppener (2011) opined “soil excavations and tests of the me-
chanical properties of soil never provide enough data to enable a 
probability calculation to be performed”. This “curse of small sam-
ple size” is more conspicuous in geotechnical engineering than in 
structural engineering (Phoon 2017). 

Site recognition is related to a fundamental feature in ge-
otechnical practice, namely all sites are different to some extent 
(site specificity). For example, Clause 2.4.5.2(10) of Eurocode 7 
(CEN 2004) “Characteristic values of geotechnical parameters” 
advises against pooling data from different sites into a single pop-
ulation for statistical analysis: “If statistical methods are employed 
in the selection of characteristic values for ground properties, such 
methods should differentiate between local and regional sampling 
and should allow the use of a priori knowledge of comparable 
ground properties”. 

Stratification requires an identification of soil type and a map-
ping of the spatial distribution of each soil type based on field tests 
typically conducted at discrete locations/depths in a soil mass. Ge-
ophysical data provide more continuous spatial coverage, but they 
are less common and not well studied (Sauvin et al. 2019). These 
challenges are not new. An engineer encounters them routinely in 
practice, but they are not regarded as challenges because judg-
ment-based solutions are widely accepted as satisfactory. For in-
stance, a single characteristic depth profile for a soil parameter is 
selected from actual spatially variable measurements by an engi-
neer making a “cautious” judgment call. One expects different 
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engineers to arrive at different characteristic profiles (Bond and 
Harris 2008). This is hardly surprising. An engineer applies expe-
rience gained from other sites to interpret limited data at the cur-
rent site of interest. However, he/she will not regard all sites to be 
equally relevant – again experience (occasionally complemented 
by some broad knowledge of local geology) is needed to recognize 
that some sites are more relevant or “similar”. For the construction 
of a 2D geologic section (or fence diagram), it is not uncommon 
to connect the same soil type (interpreted by an engineering geol-
ogist from disturbed samples) between two adjacent boreholes us-
ing a straight line or to insert a question mark with a speculative 
dashed line to indicate “not sure” if the sequence of soil types does 
not match between two adjacent boreholes.  

There is a strong contrast between judgment-based site char-
acterization that remains relatively unchanged for decades and in-
creasingly sophisticated physics-based modeling of soil-structure 
interaction such as the material point method. Phoon et al. (2022b) 
opined that: “Currently, numerical analysis is conducted using de-
terministic inputs and simple soil profiles that are inconsistent with 
sparse site data. This deterministic mapping (one set of inputs to 
one set of outputs) does provide valuable physical insights, but 
cannot support risk-informed decision making on its own without 
appealing to engineering judgment”. Physical insights can be gar-
nered from “what if” parametric studies involving worse credible 
inputs and/or scenarios, but a formal risk analysis is not possible 
without uncertainty quantification. Phoon et al. (2022c) proposed 
a “data first practice central” agenda called data-centric geotech-
nics that seeks to reduce this gap between data and decision mak-
ing at a specific site. While current judgment-based solutions have 
been effective, they do not benefit from digital technologies. In 
reference to the increasing amount of information generated by 
digital technologies, Mitchell and Kopmann (2013) observed that 
the “evaluation of its validity and importance, and deciding which 
of it should be included was one of the major challenges faced by 
the authors, and it provided an excellent example of the ‘infor-
mation overload’ problem.” To the authors’ knowledge, there is 
no human-in-the-loop decision making mediated by machine 
learning in geotechnical engineering. The agenda for data-centric 
geotechnics is underpinned by three core elements: (1) data-cen-
tricity, (2) fit for (and transform) practice, and (3) geotechnical 
context (Phoon et al. 2022c). 

With the above agenda in mind, Phoon and Zhang (2023) 
opined that an engineer will be particularly interested in “data 
quantity and quality (how much data is enough? what type of data 
is useful?), learning bias (how general is the algorithm?), compu-
tational cost (are training and inference costs affordable?), ex-
plainability (can the predictions be understood by humans?), and 
decision making (can judgment be utilized?)”. Given the nascent 
stage of development in data-centric geotechnics, it is not surpris-
ing that these questions remain largely unanswered. 

In the context of data-driven site characterization (DDSC), 
Phoon et al. (2022c) presented the following seven aspects in Pro-
ject DeepGeo that are deemed worthy of further study: (1) inputs 
are restricted to actual real-world site investigation data, (2) data 
from other sites are routinely used to supplement limited site-spe-
cific data in practice based in large part on engineering judgment 
and appreciation of regional geology, but there is no fully satisfac-
tory machine learning method to do this for BID, (3) human expe-
rience cannot be incorporated in any machine learning method 
thus far to produce continuous improvement in the algorithm, i.e., 

there is no virtuous machine-human decision cycle (Phoon et al. 
2022a), (4) machine learning methods remain ‘‘black box”, and 
the lack of ‘‘explainability” of the outputs may not inspire suffi-
cient confidence in an engineer who takes responsibility for the 
decision, (5) generality of data-driven inferences beyond the scope 
of the training dataset is unknown, (6) ‘‘bad” data that lead to 
wrong decisions should exist for a sufficiently large BID, but 
standard outlier analysis may not be applicable to sparse and in-
complete spatially varying datasets, and (7) cost of computing 3D 
stratigraphic realizations at true scale (e.g., a ‘‘medium” bench-
marking problem 40 m long × 20 m wide × 20 m deep cuboid pro-
posed by Phoon et al. (2022d) consistent with observed data can 
be excessive, including the need to re-train from scratch for every 
new site. 

Research in DDSC has gained momentum in recent years 
(e.g., Huang et al. 2018; Cao et al. 2019; Ching and Phoon 2019; 
Wang et al. 2019; Ching and Phoon 2020a; Ching and Phoon 
2020b; Shuku et al. 2020; Ching et al. 2021a; Ching et al. 2021b; 
Shi and Wang 2021; Wang et al. 2021; Xiao et al. 2021a; Xiao et 
al. 2021b; Xu et al. 2021; Yoshida et al. 2021; Ching et al. 2022; 
Sharma et al. 2022; Wu et al. 2022; Ching et al. 2023a; Shuku and 
Phoon 2023). It is clear that a number of papers remain method-
centric and the contributions are not situated within a broader 
agenda such as data-centric geotechnics. The gaps between re-
search and practice are less evident in the absence of an agenda 
that emphasizes “fit for practice”. As such, these gaps may not at-
tract the attention they deserve. The directions for future research 
are likely to be less impactful if transforming practice in a major 
way is not regarded as a key impetus in the agenda. 

The purpose of this paper is to review some research out-
comes in the context of data-centric geotechnics using the site 
recognition challenge as an example. There is no pathway for 
DDSC to progress without exploiting big data beyond the sparse 
data available at the target site of interest (data-driven methods 
need a reasonable amount of data for training), but it is necessary 
to combine data in a manner sensitive to site differences and even 
more ideally, sensitive to the accumulated experience and 
knowledge in geotechnical engineering. Hence, this site recogni-
tion challenge is fundamental to DDSC. Recent research progress 
in this direction is deserving deeper examination particularly in 
two aspects of central interest to data-centric geotechnics high-
lighted above by Phoon et al. (2022c) and Phoon and Zhang 
(2023): (1) generality of inferences beyond the scope of the train-
ing set and (2) “explainability” of the inferences.  These aspects 
are illustrated using a generic clay property database 
CLAY/10/7490 (Ching and Phoon 2014) and a target site at Onsøy, 
Norway (Lacasse and Lunne 1982). 

2.  SITE RECOGNITION CHALLENGE 

The challenge is to quantify “site uniqueness”, directly or in-
directly, so that sparse site-specific data can be supplemented by 
big indirect data (BID) to produce a quasi-site-specific model. It 
goes without saying that the statement “two sites are unique” or 
conversely “two sites are similar” is meaningful only in the prob-
abilistic sense. The value of such a model is that it is less biased 
than a generic model (containing abundant data from many sites) 
and less imprecise than a site-specific model (containing sparse 
data from one site). This idea is not new as geotechnical and rock 
engineers have been relying on data from similar sites to inform 
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their understanding of a current site. One simple example is the 
construction of a correlation to estimate a design parameter from 
a field test parameter, say to estimate the undrained shear strength 
from the cone tip resistance. A more generic name is a transfor-
mation model (Phoon and Kulhawy 1999a; Phoon and Ching 
2017). In practice, site effects are broadly appreciated based on 
geology, soil mechanics, and experiences at similar sites, rather 
than characterized quantitatively through a detailed multivariate 
analysis of the site data. It is routine for engineers to identify the 
geologic formations in a soil report and make the broad connection 
that soil properties in the same geologic formation can be used for 
design even if they are found at different sites. Singapore’s geol-
ogy is divided into the Kallang formation (soft clays), Bukit Timah 
Granite, Jurong formation (sedimentary), Old Alluvium, etc. 
(http://www.srmeg.org.sg/docs/N13072012_2.pdf). When an en-
gineer encounters the Kallang formation at the current project site, 
he/she can refer to data from past projects that encountered this 
formation to supplement limited site-specific data at the current 
project site. Phoon et al. (2004) recommended a cone factor for the 
estimation of the overconsolidation ratio from the cone tip re-
sistance for the Upper Marine Clay (Kallang formation) in Singa-
pore. For the undrained shear strength versus cone tip resistance 
transformation model, the cone factor also can be expected to be 
similar at similar sites.  The cone factor can vary between 4.5 and 
75 (Djoenaidi 1985), although some differences may be attributa-
ble to measurement errors (Kulhawy and Mayne 1990). Ching and 
Phoon (2012a) conducted an extensive analysis of site effects for 
piezocone (CPTU) based transformation models using a global 
CPTU database covering 38 sites worldwide. Although the current 
geology-based approach can offer qualitative insights on site ef-
fects, it is restricted to the localities that an engineer practices in 
and gains experience from. Big data containing soil records world-
wide cannot inform this approach easily. 

The typical caveat included in design guides would include a 
general statement such as “caution must always be exercised when 
using broad, generalized correlations of index parameters or in-
situ test results with soil properties. The source, extent, limitations 
of each correlation should be examined carefully before use to en-
sure that extrapolation is not being done beyond the original 
boundary conditions. ‘Local’ calibrations, where available, are to 
be preferred over the broad, generalized correlations” (Kulhawy 
and Mayne 1990). Notwithstanding this sensible caveat, the engi-
neer is typically left with no recourse but to use these generalized 
correlations/transformation models in the absence of “local” ver-
sions and lack of knowledge of the “source, extent, limitations”. A 
local or site-specific transformation model is commonly unavaila-
ble, because there is insufficient data to construct a model of suf-
ficient precision to be useful for decision making (estimate design 
parameter). Statistical uncertainty is very large when the sample 
size is small. 

The development of a purely data-driven approach that can 
construct a quasi-site-specific model from site-specific data and 
similar sites in BID remains an outstanding and very difficult tech-
nical challenge, because real site data is “ugly”. Phoon et al. 
(2019) presented a useful mnemonic, MUSIC-X (Multivariate, 
Uncertain and Unique, Sparse, Incomplete, and potentially Cor-
rupted with “X” denoting the spatial/temporal dimension) to high-
light seven common “ugly” attributes in real site data. Phoon et al. 
(2022) extended MUSIC-X to MUSIC-3X to cover 3D spatial var-
iability that is more typically exhibited in a real site. “M” and “X” 

are associated with two distinct types of correlations commonly 
termed as “cross correlations” and “auto correlations”, respec-
tively. Research on constructing a quasi-site-specific transfor-
mation model from MUSIC-3X data has been initiated recently 
only. The metric for distinguishing two sets of MUSIC-3X data is 
not the same as the classical statistical distance between two prob-
ability distributions (Sharma et al. 2022). Classical statistical dis-
tance such as the Mahalanobis distance, Bhattacharyya distance, 
or Kullback-Leibler divergence is applicable to ideal data only.  

Table 1 summarizes some data-driven methods that attempt 
to account for site uniqueness in constructing a quasi-site-specific 
transformation model. The exception is the classical probabilistic 
multiple regression method (Ching and Phoon 2012b). It regards 
all site data as belonging to a single generic population (G), i.e., it 
assumes there is no inter-site variability. It is included in Table 1 
for completeness, to serve as a baseline method, and because it is 
widely applied in practice. The other five methods view site-spe-
cific data (S) as distinct from G and attempt to combine S and G 
based on different models for inter-site variability. Only two meth-
ods are “explainable” in the sense that similar records (Ching and 
Phoon 2020a) or similar sites (Sharma et al. 2022) are explicitly 
identified and hence the engineer can perform a “reality check” on 
the identified sites and understand how additional data from these 
sites influenced the quasi-site-specific model and the predictions 
derived from this model. The majority of the machine learning 
methods are black boxes – the engineer does not understand the 
process leading to the predictions. Despite this limitation, they 
have been shown to reduce bias and imprecision compared to the 
classical probabilistic multiple regression method within the scope 
of the training dataset (Ching and Phoon 2019, 2020a; Ching et al. 
2020, 2021b; Sharma et al. 2022). Although the broad contours of 
the site recognition challenge have been outlined (Phoon et al. 
2022a), many detailed aspects have not been studied or only stud-
ied in a limited way. Let S = T ∪ V. Assume T is a training set of 
size n and V is a validation set of size m. There are 2 types of T 
and V: (1) internal validation: V1 is fully contained within T1 and 
(2) external validation: V2 is fully outside of T2. An example of 
Type 1 is T1 covering sands with relative density between 20% and 
80% (loose to dense) and V1 covering sands with relative density 
between 40% and 80% (medium to dense). G is a generic set of 
size p. S is not part of G and it is typical for p >> (n + m). The 
following problems are worthy of further study: 

 1. “Best” quasi-site-specific model – Let G2 be a subset of G 
that is selected as “similar” to T1. Assume G2 can be restricted 
to size m. Let M1 be the multivariate PDF constructed from 
T1 ∪ V1.  M1 is the actual site-specific model. Let M2 be the 
multivariate PDF constructed from T1 ∪ G2. M2 is the quasi-
site-specific model. The “best” model can be defined as M2 
close to M1. A weaker criterion is to compare M1 and M2 over 
one or several pairs of soil parameters and not restricting the 
size of G2. T1 needs to be large enough to train the models 
and V1 needs to be larger than T1 to discern the difference 
between M1 and M2. This proposed criterion can be used to 
rank the performance of quasi-site-specific models such as 
those in Table 1. 

 2. Extrapolation test (external validation) – Let G2 be a subset 
of G that is selected as “similar” to T2. The performance of 
M2 = T2 ∪ G2 outside the scope of T2 can be validated using 
V2. All data-driven methods must be validated internally  
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Table 1  Methods to construct a quasi-site-specific transformation model from MUSIC-3X data and BID 

Method Big indirect data Site-specific data Quasi-site-specific model M Site uniqueness Explainable
Probabilistic multiple 

regression 
(Ching and Phoon 

2012b) 

G G M = G No  

Hybrid 
(Ching and Phoon 

2019) 
G S M = G × S Yes, but empirical No 

Record similarity 
(Ching and Phoon 

2020a) 
G = (G1, G2) S Select G2 (list of records) ≈ S

M = S + G2 
Yes, at record level Yes 

2-step Gibbs  
(Ching et al. 2020) G2 S G2 (regional) ≈ S 

M = G2 updated by S Maybe No 

Hierarchical Bayesian 
model 

(Ching et al. 2021b) 
G = (G1, G2, …, Gn) Gn+1 M = G updated by Gn+1 Yes, at site level No 

Site similarity 
(Sharma et al. 2022) G = (G1, G2) S Select G2 (list of sites) ≈ S 

M = S + G2
Yes, at site level Yes 

 

 using V1. To the authors’ knowledge, there is no theoretical 
formulation that will assure performance against V2. There 
are different constraints to reduce over-fitting in a data-driven 
method, but the relationship between overfitting and extrap-
olation (generalizability) is unclear. The authors believe over-
fitting is mainly intended to improve internal validation, ra-
ther than to address external validation explicitly. A reasona-
ble conjecture is that physics-informed data-driven methods 
may perform better in this extrapolation test (Tao et al. 2023). 
In machine learning, generalizability is studied using meta-
learning (learning how to learn). There is no exploration of 
meta-learning and metadata to generalize algorithms for ge-
otechnical engineering at this point in time. 

 3. Quasi-regional clustering – Ching et al. (2020) showed that 
a municipal database in Shanghai (SH-CLAY/11/4051) is 
more effective in supporting quasi-site-specific predictions at 
a target site in Shanghai than a global clay database 
(CLAY/10/7490). This municipal database can be regarded 
as a regional subset/cluster in a global database that is defined 
by a geographical similarity measure (sites located in Shang-
hai). One can imagine four strategies to make a quasi-site-
specific prediction based on the premise of a “regional” ad-
vantage: 

 (1) Use entire global database with every record assigned an 
equal weight independent of its similarity to the target 
site. 

 (2) Use entire global database with every record assigned a 
weight based on its similarity to the target site. 

 (3) Use a subset of the global database (“quasi-regional” da-
tabase) with every record assigned an equal weight 

 (4) Use a subset of the global database (“quasi-regional” da-
tabase) with every record assigned an unequal weight 

There are many clustering algorithms that may be useful for 
identifying the “quasi-regional” cluster nearest to the target site 
(Xu and Tian 2015). The “quasi-regional” cluster is based on sim-
ilarity in the database features that may include geology, soil be-
havior, geographic location, and others. Wu et al. (2022) may be 
the first to study the usefulness of a “quasi regional” cluster for 
DDSC. 

 4. Explainability – A site is defined as a group of records within 
a project boundary. M2 is “explainable” if the records or sites 
in G2 can be explicitly retrieved from G and thus can be made 
accessible to the engineer for “reality check”. In more general 
terms, explainability concerns revealing the inner workings 
of the “black box” machine learning code that led to the out-
put prediction or any other mechanism that enhance human 
understanding of the process. As noted above, the engineer is 
responsible for the final design. 

 5. Transferability – Let H be a second generic population. It 
can be distinct from G, it can share some common sites with 
G, or it can be G enlarged by additional sites (G ⊂ H). For a 
given site S, a new H2 (new set of similar sites) can be iden-
tified by training H using T. However, this is computationally 
costly. One can expect G to expand with the addition of new 
sites on a regular basis. Learning is deemed “transferable” if 
past training outcome (G2) can inform the determination of 
H2, thus avoiding brute force repeated training. 

 6. Compatibility – G is currently restricted to a single soil type 
such as clay (Ching et al. 2016). One example is 
CLAY/10/7490 (Ching and Phoon 2014). However, S can 
contain records belonging to different soil types, because of 
the presence of different soil layers at different depths. All the 
methods listed in Table 1 require S and G to be compatible, 
namely only layers belonging to same soil type as G can be 
analyzed. 

This paper explores the second and third aspects using one set 
of site-specific data and one BID. Needless to say, the above list 
is not exhaustive, but intended to illustrate the range of largely un-
explored questions underlying the site recognition challenge. 

3.  BIG INDIRECT DATA (BID) 

Phoon et al. (2019) referred to big data as indirect to empha-
size the point that big data exists in geotechnical engineering, but it 
is not directly relevant to one specific project at one specific site. 
Generic soil property databases (Phoon et al. 2016; Ching et al. 
2016) and load test databases (Phoon and Tang 2019a; Tang and 
Phoon 2021) are examples of Big Indirect Data (BID). BID is 



Phoon and Ching: Additional Observations on the Site Recognition Challenge      235 

 

denoted as G in Table 1. These databases have been made available 
by ISSMGE TC304 for research: http://140.112.12.21/issmge/ 
tc304.htm?=6. A clay property BID consists of multivariate data 
from many sites. Table 2 shows a typical example of multivariate 
data at a single site. It is “Sparse” as it has 9 records, and it is 
“Incomplete” as it has empty cells shaded in grey. The data from 
many clay sites can be combined into a BID. One example is 
CLAY/10/7490 (Ching and Phoon 2014). It contains 7490 records 
from 251 studies carried out in 30 countries, clearly much larger 
than Table 2. Each record contains 10 common clay properties:  

 1. Y1 = liquid limit (LL) 
 2. Y2 = plasticity index (PI) 
 3. Y3 = liquidity index (LI) 
 4. Y4 = normalized vertical effective stress (σ′v/Pa) 
 5. Y5 = sensitivity (St) 
 6. Y6 = pore pressure ratio [Bq = (u2 − u0)/(qt − σv)] 
 7. Y7 = normalized preconsolidation stress (σ′p/Pa) 
 8. Y8 = undrained strength ratio (su/σ′v) 
 9. Y9 = normalized cone tip resistance [qt1 = (qt − σv)/σ′v] 
10. Y10 = effective cone tip resistance [qtu = (qt − u2)/σ′v] 

in which σ′v = vertical effective stress; σ′p = preconsolidation 
stress; Pa = atmospheric pressure = 101.3 kPa; qt = (corrected) 
cone tip resistance; σv = vertical total stress; u2 = porewater pres-
sure directly behind the cone; u0 = hydrostatic pore pressure; su = 
undrained shear strength. If a record is full, i.e., there are no miss-
ing values (or missing test results), this record is complete. A BID 
is defined as complete only if every record is complete. Such a 
complete BID is rare in geotechnical engineering. It is not unusual 
for an entire column to be empty as shown in Table 3 (rock mass 
properties). The percentage of BID completeness is defined as 
(number of filled values)/[(number of properties)×(number of 
rows)]. The percentage completeness for CLAY/10/7490 is 34%. 
For a BID containing rock mass properties, ROCKMass/9/5876, 
the percentage completeness is 29% (Ching et al. 2021a). A list of 
soil/rock property BIDs and percentage completeness is given in 
Table 4. A list of foundation load test BIDs is given in Table 5. 

Classical frequentist methods cannot be applied to the MU-
SIC-X data in Table 2, because it is sparse, incomplete, and there 
are spatial correlations between records measured at different 
depths. BID is not sparse, but it remains incomplete (refer to last 
column of Table 4) and it is not homogeneous due to inter-site 
variability (“U” or ”Unique” attribute). For example, it is tempting 
to model the data at each site using a multivariate probability den-
sity function (PDF) and to quantify site uniqueness using a statis-
tical distance between two site PDFs. Classical statistical distances 
such as the Kullback–Leibler divergence, Bhattacharyya distance, 
and Mahalanobis distance are available, but they do not apply to 
MUSIC-X or MUSIC-3X data as mentioned above. There is no 
frequentist method to construct a site PDF from MUSIC-X data in 
the first place. It is rarely appreciated that the conventional ap-
proach to calculate a correlation coefficient from a bivariate da-
taset cannot be extended to an incomplete multivariate dataset. A 
necessary positive definite property of the correlation matrix can-
not be guaranteed (Ching and Phoon 2015). The only practical ap-
proach available thus far is Bayesian, because of the additional 
support from prior distributions (Ching and Phoon 2019). 

Table 2 Site investigation data for a site in Onsøy (Norway) 
(Source: Lacasse and Lunne 1982) 

In-
dex

Depth
(m)

LL
(Y1)

PI
 Y2)

LI
(Y3)

σ′v/Pa 
(Y4) 

σ′p/Pa 
(Y5) 

su/σ′v 
(Y6) 

St 
(Y7)

Bq 
(Y8)

qt1 
(Y9)

qtu 
(Y10)

1 1.0 56.2 20.0 1.54 0.06 0.85 2.03 6 0.16 29.11 25.57
2 1.9 50.2 18.1 1.82 0.12 0.60 0.91 14 0.24 17.69 14.58
3 3.5 59.9 30.5 0.93 0.22 0.48 0.48 15 0.30 10.52 8.41
4 5.2 56.8 22.9 1.07 0.32 0.45 0.37 7 0.35 7.70 6.11
5 7.6 66.3 31.5 0.87 0.47 0.54 0.24 14 0.47 5.89 4.25
6 9.5 65.1 29.6 0.97 0.58  0.25 12 0.41 6.19 4.74
7 10.8 74.4 36.1 0.81 0.65 0.84 0.25 9 0.46 5.93 4.31
8 13.4 71.4 35.8 0.87 0.81 1.05 0.24  0.47 5.95 4.24
9 16.3 72.7 34.7 0.76 0.99 0.99 0.24  0.55 6.13 3.88

Note: LL = liquid limit; PI = plasticity index; LI = liquidity index; σ′v = vertical 
effective stress; σ′p = preconsolidation stress; Pa = atmospheric pressure 
= 101.3 kPa; su = undrained shear strength; su = the in-situ undrained 
shear strength mobilized in embankment and slope failures (Mesri and 
Huvaj 2007); St = sensitivity qt1 = normalized cone tip resistance = (qt 

− σv)/σ′v, where qt = (corrected) cone tip resistance and σv = vertical total 
stress; qtu = effective cone tip resistance = (qt − u2)/σ′v, where u2 = 
porewater pressure directly behind the cone; Bq = pore pressure ratio = 
(u2 − u0)/(qt − σv), where u0 = hydrostatic pore pressure 

Table 3 Site data for the İzmir subway site, Turkey (10 out of 32 
records shown for illustration) (Kıncal and Koca 2019) 

No. RQD RMR* Q GSI Em 
(GPa) 

Eem 
(GPa) 

Edm 
(GPa)

Ei 
(GPa)

σci 
(MPa)

1 5 25.5   0.11   4.2 26.0
2 18 35   0.238   7.0 39.5
3 32 41.5   0.83   10.8 72.0
4 35 41   0.564   9.0 62.0
5 37.4 41   0.72   10.7 65.2
6 24 36   0.46   10.0 50.0
7 40 39   0.51   8.0 61.0
8 18 35   0.47   8.5 48.5
9 34 35   0.39   7.5 51.2
10 42.5 44.5   1.17   12.3 86.4

* Average of the lower and upper bounds of RMRs reported in Kıncal and 
Koca (2019) 

Note: RQD = rock quality designation; RMR = rock mass rating; Q = Q-sys-
tem; GSI = geological strength index; Em = deformation modulus of rock 
mass; Eem = elasticity modulus of rock mass; Edm = dynamic modulus of 
rock mass; Ei = Young’s modulus of intact rock; σci = uniaxial compres-
sive strength of intact rock. 

4. QUASI-SITE-SPECIFIC TRANSFORMATION 
MODEL 

This section presents some recent research progress in ad-
dressing the site recognition challenge. The concept of a “quasi 
regional” cluster has not been exploited, i.e., the full BID is 
adopted in existing studies. The objective is to improve the generic 
transformation model shown in Fig. 1 so that it is less biased and 
more precise for a specific site. This generic model is widely used 
in practice (Kulhawy and Mayne 1990). Figures 1(a) and 1b show 
the data points in CLAY/10/7490 without and with site differenti-
ation, respectively. It is clear from Fig. 1(b) that site effects are not 
easy to distinguish visually, because the markers for each site do  
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Table 4  Soil/rock property databases (updated from Ching et al. 2021a and Guan et al. 2021) 

 Database Reference Soil/rock parameters # data points # sites/studies % complete

U
ni

va
ria

te
 CLAY/16 Phoon and Kulhawy (1999a) γ, γd, wn, PL, LL, PI, LI, φ′, su, su

FV, qc, qt, SPT-
N, DMT (A, B), PMT pL  a  

SAND/11 Phoon and Kulhawy (1999a) φ′, Dr, qc, SPT-N, DMT (A, B, IDMT, KDMT, 
EDMT), PMT (pL, EPMT)  b  

ROCK/8 Prakoso (2002) γ (or γd), n, R, Sh, σbt, Is, σc, E  c  
ROCK/13 Aladejare and Wang (2017) ρ, Gs, Id2, n, wc, γ, RL, Sh, σbt, Is50, σc, E, ν  d  

M
ul

tiv
ar

ia
te

 

CLAY/5/345 Ching and Phoon (2012b) LI, su, su
re, σ′p, σ′v 345 37 sites 100% 

CLAY/7/6310 Ching and Phoon (2013) su from 7 different test procedures 6310 164 studies 17.7% 
CLAY/6/535 Ching et al. (2014) su/σ′v, OCR, qtc, qtu, (u2 − u0)/σ′v, Bq 535 40 sites 100% 

CLAY/10/7490 Ching and Phoon (2014) LL, PI, LI, σ′v/Pa, σ′p/Pa, su/σ′v, St, qtc, qtu, Bq 7490 251 studies 34.1% 
FI-CLAY/7/216 D’Ignazio et al. (2016) su

FV, σ′v, σ′p, wn, LL, PL, St 216 24 sites 100% 
JS-CLAY/5/124 Liu et al. (2016) Mr, qc, fs, wn, γd 124 16 sites 100% 
JS-CLAY/7/372 Zou et al. (2017) σv, σ′v, qtc, fs/σ′v, Bq, Vs1, su/σ′v 372 25 sites 100% 
SAND/7/2794 Ching et al. (2017) D50, Cu, Dr, σ′v/Pa, φ′, qt1, (N1)60 2794 176 studies 60.0% 

EMI-ROCK/8/26000+ Kim and Hunt (2017) σc, σbt, ρ, CAI, PPI, cohesion, direction shear, 
triaxial confining 26000+ − − 

FG/5/1000 Kootahi and Moradi (2017) e, wn, LL, PI, Cc 1000 170 sites 100% 
ROCK/9/4069 Ching et al. (2018) γ, n, RL, Sh, σbt, Is50, Vp, σci, Ei 4069 184 studies 34.2% 

FG-KSAT/6/1358 Feng and Vardanega (2019) e, k, LL, PL, PI, Gs 1358 33 studies 91.4% 
SH-CLAY/11/4051 Zhang et al. (2020) LL, PI, LI, e, K0, σ′v/Pa, su/σ′v, St, qc/σ′v 4051 50 sites 39.5% 

CLAY/8/12225 Ching (2020) LL, PI, w, e, σ′v/Pa, Cc, Cur, cv 12225 427 studies − 

CLAY/12/3997 Ching (2020) LL, PI, LI, σ′v/Pa, σ′p/Pa, su/σ′v, K0, Eu/σ′v, Bq, qt1, 
N60/(σ′v/Pa) 

3997 237 studies − 

SAND/13/4113 Ching (2020) e, Dr, σ′v/Pa, σ′p/Pa, K0, Edn, qc1n, Bq, (N1)60, 
KDMT, EDMTn, EPMTn, Mdn 

4113 172 studies − 

ROCKMass/9/5876 Ching et al. (2021a) RQD, RMR, Q, GSI, Em, Eem, Edm, Ei, σci 5876 225 studies 29.3% 
CLAY-Cc/6/6203 Ching et al. (2023a) LL, PI, wn, e, Cc, Cur  6203 429 studies 61% 

Global-CPT/3/1196 Ching et al. (2023b) qt, fs, u2 1196 59 sites 100% 

Note:  
Basic – Cu = coefficient of uniformity; D50 = median grain size; ρ = density; Gs = specific gravity; γ = unit weight; γd = dry unit weight; Dr = relative density; e = 

void ratio; n = porosity; wn (or wc) = water content; PL = plastic limit; LL = liquid limit; PI = plasticity index; LI = liquidity index; GSI = geological strength 
index;  

Stress – σv = total vertical stress; σ′v = effective vertical stress; σ′p = preconsolidation stress; OCR = overconsolidation ratio; Pa = atmospheric pressure = 101.3 kPa; 
K0 = at-rest lateral earth pressure coefficient 

Strength – φ′ = effective friction angle; su = undrained shear strength; su
FV = field vane su; su

re = remoulded su; St = sensitivity; σbt = Brazilian tensile strength; σci (or 
σc) = uniaxial compressive strength of intact rock 

Deformation – Cc = compression index; Cur = unloading-reloading index; modulus; Eu = undrained modulus of clay; Ed = drained modulus of sand; Edn = 
(Ed/Pa)/(σ′v/Pa)0.5; Edm = dynamic modulus of rock mass; Eem = elasticity modulus of rock mass; Ei (or E) = Young’s modulus of intact rock; Em = deformation 
modulus of rock mass; ν = Poisson ratio; Mr = subgrade resilience modulus; Md = effective constrained modulus determined by oedometer; Mdn = normalized 
Md = (Md/Pa)/(σ′v/Pa)0.5 

Permeability - k = hydraulic conductivity; cv = coefficient of consolidation 
Dynamic - Vp = P-wave velocity; Vs = S-wave velocity; Vs1 = Vs(Pa/σ′v)0.25 
Field test - SPT-N = standard penetration test blow count; N60 = corrected SPT-N; (N1)60 = N60/(σ′v/Pa)0.5; qc = cone tip resistance; qt = corrected cone tip resistance; 

fs = sleeve frictional resistance; qtc = (qt/Pa)/(σ′v/Pa)0.5; qt1 = (qt − σv)/σ′v = normalized cone tip resistance; qtu = (qt − u2)/σ′v = effective cone tip resistance; qc1n = 
(qc/Pa)/(σ′v /Pa)0.5; Bq = pore pressure ratio = (u2 − u0)/(qt − σv); (u2 − u0)/σ′v = normalized excess pore pressure; u2 = pore pressure behind cone tip; u0 = hydrostatic 
pore pressure; PMT (pL, EPMT) = pressuremeter limit stress, modulus; EPMTn = normalized EPMT = (EPMT/Pa)/(σ′v/Pa)0.5; DMT (A, B, IDMT, KDMT, EDMT) = 
dilatometer A and B readings, material index, horizontal stress index, modulus; EDMTn = normalized EDMT = (EDMT/Pa)/(σ′v /Pa)0.5; CAI = Cerchar abrasivity 
index; PPI = punch penetration index; Q = Q-system; RMR = rock mass rating; RQD = rock quality designation; R = Schmidt hammer hardness (RL = L-type 
Schmidt hammer hardness); Sh = Shore scleroscope hardness; Id2 = slake durability index; Is = point load strength index (Is50 = Is for diameter 50 mm) 

a = The no. of data groups varies between 2 and 42 depending on the clay parameter. Statistics are calculated at the data group level. The average no. of data 
points/data group varies between 16 and 564. Details given in Tables 1-3, Phoon and Kulhawy (1999b). 

b = The no. of data groups varies between 5 and 57 depending on the sand parameter. Statistics are calculated at the data group level. The average no. of data 
points/data group varies between 15 and 123. Details given in Tables 1-3, Phoon and Kulhawy (1999b). 

c = The no. of data groups varies between 30 and 174 depending on the rock parameter with no differentiation of rock type [igneous (intrusive, extrusive, 
pyroclastic), sedimentary (clastic, chemical), metamorphic (foliated, non-foliated)]. Statistics are calculated at the data group level. The average no. of data 
points/data group varies between 3 and 161 for σc (Prakoso, 2017). Details given in Table 4.4, Prakoso (2002). 

d = The no. of data groups varies between 2 and 47 depending on the rock parameter and rock type (igneous, sedimentary, or metamorphic). Statistics are calculated 
at the data group level. The average no. of data points/data group varies between 7 and 92. Details given in Tables 2-4, Aladejare and Wang (2017). 
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Table 5  Foundation load test databases in Tang and Phoon (2021) 
Database/Reference Limit state Soil type # load 

tests 
Pile geometry Soil parameters B (m) D/B 

NUS/ShalFound/919 
(Tang et al. 2020) 

Bearing Clay 56 0.3-5 0-5.7 su = 9-200 kPa
Sand 427 0.25-7 0-6.1 φ = 26-53°

Tension Clay 123 0.31-3.05 0.8-13.2 su = 15-300 kPa
Sand 313 0.1-2.5 0.5-14.5 φ = 30-49°

NUS/ShalFound/Punch-Through/31 
(Tang and Phoon 2019a) 

Punch-
through Sand-over-clay 31 0.8-3 0.5-3 

φcv = 32° 
Dr = 88% 

su = 8.7-85.9 kPa

NUS/Spudcan/Punch-Through/212 
(Tang and Phoon 2019a) 

Punch-
through 

Multi-layer clays 
with sand 140 3-20 0.16-1.17 

φcv = 31-34° 
Dr = 44-99% 

su = 7.2-44.8 kPa 

Multi-layer clays 
with stiff layer 72 3-12  su = 3-50 kPa 

ρ = 0-2.6 kPa/m 

NUS/DrilledShaft/542 
(Tang et al. 2019) 

Bearing 
Clay 64 0.32-1.52 1.6-56 su = 41-256 kPa
Sand 44 0.35-2 5.1-59 φ = 30-41°

Gravel 41 0.59-1.5 6.2-30 φ = 37-47°

Tension 
Clay 32 0.36-1.8 3.4-55 su = 21-250 kPa
Sand 30 0.3-1.31 2.5-43 φ = 30-45°

Gravel 109 0.43-2.26 1.77-17.3 φ = 42-48°

NUS/DrivenPile/1243 
H section (Tang and Phoon 2018a; Phoon and Tang 2019b) Bearing 

Clay 47 0.28-0.41 16-95 NSPT = 5-50
Sand 52 0.28-0.42 22-110 NSPT = 7-40

Mixed 50 0.28-0.42 17-85 NSPT = 4-29

NUS/DrivenPile/1243 
Tube/box section (Tang and Phoon 2019b) 

Bearing 

Clay 

175 0.1-0.81 7.9-200 
PI = 11%-160% 
OCR = 1-43.2 

St = 1-17

Tension 64 0.1-0.81 12-110 
PI = 12%-110% 
OCR = 1-43.2 

St = 1-8.3

NUS/DrivenPile/1243 
Tube/box section (Tang and Phoon 2018b) 

Bearing 
Sand 

134 0.14-0.76 13-251 φ = 30-42° 
Dr = 15%-93%

Tension 28 0.25-0.76 19-84 φ = 30-42° 
Dr = 31%-97%

NUS/RockSocket/721 
(Tang and Phoon 2021) End bearing Rock 270 0.1-2.5 1-31.3 

σc = 0.5-99 MPa 
Em = 7.82-75113 MPa

GSI = 7.5-95 
RQD = 20%-100%

NUS/RockSocket/721 
(Tang and Phoon 2021) 

Shaft 
shearing Rock 544 0.2-3.2 0-19.5 

σc = 0.4-99 MPa 
Em = 24-19844 MPa 

GSI = 50-70 
RQD = 0-100%

NUS/HelicalPile/1113 
(Tang and Phoon 2018c 2020) 

Bearing Clay 270 0.21-1.02 6-74 su ≤ 305 kPa
Sand 181 0.21-1.02 6-110 φ = 30-45°

Tension Clay 165 0.21-0.91 12-48 su ≤ 300 kPa
Sand 121 0.21-0.91 10-62 φ = 30-45°

Note: B = foundation diameter; D = foundation embedment depth or thickness of sand layer; su = undrained shear strength of clay; ρ = strength gradient; φ = friction 
angle of sand; φcv = constant volume friction angle; Dr = relative density of sand; NSPT = blow count in standard penetration test (SPT); PI = plasticity index; 
OCR = overconsolidation ratio; St = soil sensitivity index; σc = uniaxial compressive strength of rock; Em = elasticity modulus of rock; GSI = geological 
strength index; and RQD = rock quality designation.

not form distinct non-overlapping clusters. Nonetheless, this does 
not mean clusters do not exist in higher dimensions. 

The site-specific data is shown in Table 2 (Onsøy site, 
Norway). It is divided in two different ways to illustrate the effect 
of extrapolation: 
 1. Internal validation: Training dataset T1 = row (1, 3, 5, 7, 9) 

and validation dataset V1 = row (2, 4, 6, 8). 
 2. External validation: Training dataset T2 = row (2, 3, 4, 6, 9) 

and validation dataset V2 = row (1, 5, 7, 8). 

Internal validation is routinely conducted to evaluate the 
performance of machine learning methods. There is no theoretical 
guarantee that machine learning methods will be well behaved 
under external validation. Nonetheless, it is of practical interest to 
study the potential degradation of performance using (T2, V2). 

Using the BID in Fig. 1 and the training dataset T1 or T2, a 
quasi-site-specific model can be developed using different 
methods to predict the 95% confidence interval (CI) for the 
undrained strength ratio at the corresponding validation dataset 
(V1 or V2). These 95% CI can be compared with the measured 
undrained strength ratios, which are available but assumed to be 
unknown at the model training/calibration stage. For illustration, 
only the bivariate subset [qt1, (su/σ′v)] is used in this study unless 
stated otherwise. The methods presented below are not restricted 
to bivariate datasets. However, they are restricted by a common 
assumption that all soil properties that are typically non-normal in 
marginal distributions can be transformed to standard normal 
random variables and these variables constitute a multivariate 
normal vector (Ching and Phoon 2015). 
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Fig. 1 Generic transformation model for undrained strength ratio (su/σ′v) versus normalized cone tip resistance qt1 = [(qt − σv)/σ′v] based 

on CLAY/10/7490 (Ching and Phoon 2014): (a) No site differentiation and (b) Sites differentiated by distinct markers

Five methods are discussed below: (1) probabilistic multiple 
regression, (2) hybridization, (3) hierarchical Bayesian model, (4) 
record similarity method, and (5) site similarity method. The first 
method is generic. The rest are quasi-site-specific. The last two 
methods are “explainable” in the sense that an engineer can inspect 
the “similar” sites supporting the construction of the quasi-site-
specific (su/σ′v) versus qt1 model. 

4.1  Probabilistic multiple regression 

The probabilistic multiple regression (PMR) was first 
proposed by Ching and Phoon (2012b) for a complete multivariate 
soil property database CLAY/5/345. The basic idea is to first 
convert the physical (Y8, Y9) = [qt1, (su/σ′v)] database into a 
standard normal (X8, X9) database and then construct the bivariate 
normal probability density function (PDF) of (X8, X9) based on 
this standard normal database. For PMR, the training dataset (T1 
or T2) is simply added to Fig. 1(a) and a new regression model is 
calculated (Fig. 2(a) or Fig. 2(c)). However, Fig. 2(a) or Fig. 2(c) 
is almost the same as Fig. 1(a), because the effect of adding 5 
records (red markers) to BID [716 records from 72 sites in 
CLAY/10/7490 contain both qt1, (su/σ′v)] is negligible. Prediction 
is carried out by reading the values of the 95% CI from Fig. 2(a) 
or Fig. 2(c) at the four different values of Y9 in the corresponding 
validation dataset (Fig. 2(b) or Fig. 2(d)). It can be seen that the 
actual measured values (yellow markers) fall within the predicted 
95% CI. On the average, one expects 1 measured value out of 20 
values to fall outside a 95% CI. PMR is the standard approach 
widely adopted in practice, typically in a bivariate form (Kulhawy 
and Mayne 1990). It produces a generic model, not a quasi-site-
specific model. There is no difference between internal and external 
validation in this example, because V1 and V2 are within the broad 
coverage of the generic transformation model. The authors are not 
aware of any method that can modify PMR for site effects, short of 
an engineer manually selecting “similar” sites before applying 
PMR. Figure 2 presents a baseline for comparison with the quasi-
site-specific models discussed in the next four sections. 

4.2  Hybridization 

The hybridization method (HYB) was proposed by Ching and 
Phoon (2019). The basic idea is to first construct the generic PDF 
model in a standard normal (X8, X9) space as done in PMR. A site-
specific PDF model is next constructed based on the site-specific 
training dataset (T1 or T2) using Bayesian machine learning (also 
in standard normal space). As noted above, there is no classical 

frequentist approach that can do this for the type of data shown in 
Table 2 or Table 3. The “trained” quasi-site-specific model is a 
hybrid PDF that is proportional to the product of the generic PDF 
and site-specific PDF. There is no theoretical basis for this 
“product” hybridization step. The hybrid PDFs so produced by T1 
and T2 are shown in Figs. 3(a) and 3(c), respectively. Note that 
additional values covering a much wider range of 1 < qt1 < 100 are 
added to T1 and T2 to extend the quasi-site-specific model beyond 
the range of 5.89 < qt1 < 29.11 in Table 2. However, the 
corresponding values of (su/σ′v) are missing, since they are not 
measured. Figures 3(a) and 3(c) look similar, because T1 and T2 
are small datasets containing 5 records, resulting in relatively 
diffused PDFs with large standard deviations. The product of these 
diffused PDFs with a generic PDF is likely to be dominated by the 
generic PDF. Hence, it is not surprising that Figs. 3(a) and 3(c) are 
also similar to Fig. 1(a) (generic PDF).  

For internal validation, hybridization works better than PMR, 
because the 95% CIs in Fig. 3(b) are smaller than those in Fig. 2(b). 
For external validation, hybridization seems to produce results no 
worse than Fig. 2(d). The hybridization method is designed so that 
the quasi-site-specific model converges to the generic model when 
the site-specific data becomes uninformative (very sparse and/or 
very incomplete). As such, the performance of the hybridization 
method cannot be poorer than that of the generic model even under 
external validation, unless V2 lies outside the generic database 
(CLAY/10/7490). The dashed boxes in Fig. 3 maps the range of 
[qt1, (su/σ′v)] in the training dataset to the validation figures to 
highlight the degree of extrapolation. 

Engineers frequently asked for guidance on the minimum 
number of data points needed to construct a reliable local or site-
specific transformation model. This is an important practical 
question. There is an assumption underlying this question that data 
is univariate and there are no other data attributes affecting 
reliability. As shown in Tables 2 and 3, actual site data is 
commonly multivariate in nature. The more complete attributes for 
multivariate data are summarized as MUSIC-3X. Sparsity or a 
limited number of data points is only one attribute, and it is not 
the only attribute that can affect the reliability of a transformation 
model. Hence, for the general case of MUSIC-3X, there is no 
simple or general answer, because reliability depends on the 
transformation model, the number of soil parameters involved, 
the attributes of the site-specific data (e.g., sparsity, 
incompleteness, strength of cross/spatial correlations, percentage 
of corrupted data, etc.), and the desired precision (e.g., tolerable 
size of the 95% confidence interval for a site-specific prediction). 
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Fig. 2.  Generic transformation model based on probabilistic multiple regression (PMR): (a) “training” using T1 (direct combination of T1 
and generic data); (b) internal validation V1; (c) “training” using T2 (direct combination of T2 and generic data); (d) external 
validation V2. Onsøy training datasets are shown in red circular marker. Onsøy validation datasets are shown in yellow circular 
marker 

 

 

Fig. 3 Quasi-site-specific model based on the hybridization method (HYB): (a) “training” using T1 (product of T1 and generic PDF); (b) 
internal validation V1; (c) “training” using T2 (product of T2 and generic PDF); (d) external validation V2. Onsøy training datasets 
are shown in red circular marker. Onsøy validation datasets are shown in yellow circular marker 

(a) (c)

(b) (d)

(a) (c)

(b) (d)
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However, it is possible to answer a weaker version of this 
question: is the entire table of data records (not just one column of 
numbers) collected in a site investigation program not good 
enough? As a concrete example, is Table 2 not good enough? A 
possible approach is to apply the hybrid method as described 
above. Based on Fig. 3(a), it can be seen that the hybrid solution 
is almost the same as the generic solution shown in Fig. 2(a). Even 
if the Onsøy clay happens to behave in the same way as a “generic” 
clay (rather unlikely), this does not affect the conclusion that Table 
2 did not provide information beyond what is available in 
CLAY/10/7490. As far as this specific transformation model is 
concerned, Table 2 has very limited value to decision making 
(estimation of su/σ′v) in terms of reducing bias and/or increasing 
precision. As such, Table 2 is not good enough to construct a local 
model. It will be useful to provide more guidance to the engineer 
if he/she wishes to conduct a second site investigation program 
based on what is known in Table 2, such as: (1) which sub-group 
of soil parameters should be tested more extensively, (2) how 
many additional tests are needed for each soil parameter, (3) where 
are the locations for the additional tests, (4) which new soil 
parameters should be measured, and (5) what is most cost effective 
strategy based on the above questions. To the authors’ knowledge, 
there is no data-driven methodology to do this at present, although 
inverse analysis may provide a partial ingress to this challenge 
(Phoon et al. 2022b). 

4.3  Hierarchical Bayesian model 

The records for each site can be grouped by a distinct marker 
as shown in Fig. 1(b). The scatter within one group is called intra-

site variability. The scatter between groups is called inter-site 
variability. If CLAY/10/7490 is structured in this way, a natural 
approach to construct the quasi-site-specific transformation is to 
apply the hierarchical Bayesian model (HBM) (Gelman and Hill 
2006). However, there are two practical problems in applying 
HBM to site data. First, it can be computationally tedious. Second, 
HBM has not been applied to MUSIC-X or MUSIC-3X data. 
Ching et al. (2021b) proposed an analytical HBM for MUSIC data 
(assuming no spatial variability) based on conjugate priors that is 
computationally efficient. In comparison to hybridization, HBM 
has a sound theoretical basis. Although the underlying data 
structure in CLAY/10/7490 may not follow HBM, particularly an 
analytical one based on conjugate priors, it is arguably a 
reasonable first step to study site uniqueness under an established 
theoretical framework. The quasi-site-specific transformation 
models based T1 and T2 are shown in Figs. 4(a) and 4(c), 
respectively. Note that Figs. 4(a) and 4(c) are no longer the same. 
In this sense, HBM is more sensitive to the training dataset. For 
internal validation, HBM works better than HYB, because the 95% 
CIs in Fig. 4(b) are smaller than those in Fig. 3(b). For external 
validation, HBM also seems to work better than HYB with smaller 
95% CIs that capture the measured values closer to the medians. 
More importantly, HBM produces a model that looks different 
from HYB. It has been pointed out in Section 4.2 that T1 is not 
good enough to produce a local (site-specific) model, because 
HYB looks the same as the generic model in Fig. 2(a). However, 
T1 appears to be good enough to change the generic model when 
it can draw upon the HBM inter-site variability information. It is 
noteworthy that this is possible, although T1 only contains 5 
records. HYB does not contain inter-site variability information.

 

 

Fig. 4 Quasi-site-specific model based on the hierarchical Bayesian model (HBM): (a) training using T1 (compute T1 PDF based on HBM 
hyper-parameters calibrated from CLAY/10/7490); (b) internal validation V1; (c) training using T2 (compute T2 PDF based on 
HBM hyper-parameters calibrated from CLAY/10/7490); (d) external validation V2. Onsøy training datasets are shown in red 
circular marker. Onsøy validation datasets are shown in yellow circular marker
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4.4  Record similarity method 

Phoon and Zhang (2023) opined that decision making is the 
responsibility of an engineer (not the operation) and this is ideally 
carried out if the engineer can understand the inference produced 
by the operation (“explainable” inference). The key limitation of 
hybridization and HBM is that they are not “explainable” in the 
sense that “similar” sites are not identified and the engineer is thus 
deprived of an opportunity to inspect the list of “similar” sites 
against his/her experience and knowledge of regional geology 
(“reality check”). An engineer cannot engage meaningfully in the 
decision loop without understanding how an inference is arrived at. 
This is the well-known “black box” problem in machine learning. 

Ching and Phoon (2020a) proposed the first approach to 
address this “explainable site recognition” challenge. The basic idea 
is to construct a site-specific PDF using Bayesian machine learning 
as presented in Ching and Phoon (2019). The degree of “similarity” 
of a record in CLAY/10/7490 to the Onsøy training dataset (T1 or 
T2) is proportional to the value of the PDF corresponding to the 
record. The constant of proportionality changes according to the 
incompleteness of the record. Based on this adjustment, the 
similarity of two records with different missing variables (different 
incompleteness structure) can be compared. A record with 
“similarity” > 1 means it is more “similar” to the Onsøy training 

dataset compared to an average record in CLAY/10/7490. These 
records are highlighted by a triangular marker in Fig. 5.  

In contrast to HBM, “similar” records are made known to the 
engineer for inspection. For example, an engineer can compare the 
Onsøy data (training and validation) with records with “similarity” 
> 1 in the Casagrande plasticity chart (Fig. 6(a)). The “similar” 
records do not cluster around the Onsøy data in the Casagrande 
plasticity chart. This does not imply that the record similarity 
method is incorrect, because “similarity” in this example is 
measured in a bivariate space (Y6, Y9) = (su/σ′v, qt1). The 
Casagrande plasticity chart measures “similarity” in (LL, PI) or 
(Y1, Y2). Using the classical face recognition problem as an 
analogue, this means similarity between eyes and nose does not 
imply similarity between ears and mouth. The results in Fig. 6(a) 
seem to hint that similarity should be measured by more than two 
properties. However, it is also known that all sites become distinct 
if too many properties are included. Figure 6(b) shows the results 
of measuring “similarity” in a 5-dimensional space (Y3, Y5, Y6, Y8, 
Y9) = (LI, σ′p/Pa, su/σ′v, Bq, qt1). There are less “similar” records as 
to be expected but the degree of clustering around the Onsøy data 
does not improve. The research question on whether an optimum 
number and/or optimum list of properties exist for explainable site 
recognition analysis has not been answered. 

         

         

Fig. 5 Quasi-site-specific model based on the record similarity method: (a) training using T1 (weighted regression with each record in T1 

carrying a weight of 1 and each record in CLAY/10/7490 carrying a weight proportional to its record “similarity” to T1); (b) 
internal validation V1; (c) training using T2 (weighted regression with each record in T2 carrying a weight of 1 and each record 
in CLAY/10/7490 carrying a weight proportional to its record “similarity” to T2); (d) external validation V2. Records with 
similarity index > 1 are shown in green triangular markers. Onsøy training datasets are shown in red circular marker. Onsøy 
validation datasets are shown in yellow circular marker 
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Fig. 6 Comparison between Onsøy site records (red circular marker) and “similar” CLAY/10/7490 records (green triangular marker) 
using the Casagrande plasticity chart. “Similar” records are defined by a record similarity index > 1 computed in: (a) bivariate 
space (Y6, Y9) = (su/σ′v, qt1) and (b) 5-dimensional space (Y3, Y5, Y6, Y8, Y9) = (LI, σ′p/Pa, su/σ′v, Bq, qt1)

Finally, a quasi-site-specific transformation model is 
constructed by performing a weighted regression with T1 and T2 
and all records in CLAY/10/7490 as shown in Figs. 5(a) and 5(c), 
respectively. The weight for each record in the Onsøy training 
dataset (T1 or T2) is equal to 1 by construction. The approach to do 
this is to divide the training set, say T1, into 2 parts. The first part 
T1-A contains 4 records. The second part T1-B contains 1 record. 
T1-A forms the basis to construct a site-specific PDF using 
Bayesian machine learning. T1-B is considered as an “external” 
record in a generic database such as CLAY/10/7490, although it is 
part of the Onsøy site data in actuality. The “similarity” of the 
single record in T1-B as measured by the site-specific PDF based 
on T1-A can be computed. It is possible for each record in T1 to 
be classified as T1-B. Hence, the above exercise can be repeated 5 
times and the average “similarity” Save can be computed. Save can 
be viewed as a “self-similarity”. The weight for a record in 
CLAY/10/7490 is defined as its “similarity” divided by Save. Using 
this “leave-one-out” approach, the weight of the site-specific data 
is 1 (approximately) by construction. The weight for a record in 
CLAY/10/7490 is close to 1 if it is similar to the Onsøy training 
dataset and close to 0 if it is dissimilar. In this way, it is not 
necessary to prescribe an arbitrary threshold to divide between 
“similar” and “dissimilar” sites. The difference between Figs. 5(a) 
and 2(a) is the use of weights in regression. Figure 2(a) is based 
on regression with a weight of 1 for all records regardless of 
similarity. 

For internal and external validation, the record similarity 
method seems to work marginally better than HYB but less well 
when compared to HBM. 

4.5 Site similarity method 

The record similarity method (Ching and Phoon 2020) can 
only compare one record in CLAY/10/7490 with the records in the 

Onsøy site. In other words, it can consider site grouping at the 
target site (Onsøy) but it cannot consider site grouping in 
CLAY/10/7490. Sharma et al. (2022) proposed a site similarity 
method based on HBM to address this limitation. The site 
similarity measure is essentially the joint density of the Onsøy data 
based on the PDF of one comparison site in CLAY/10/7490. The 
PDF is evaluated approximately using HBM. This measure is 
normalized so that it is unity when the Onsøy data is compared 
with its own PDF (self-similarity). This site similarity measure 
elegantly reduces to the classical Kullback–Leibler divergence for 
complete multivariate data. 

Figures 7(a) and 7(c) show the quasi-site-specific models 
and sites with similarity > 0.1 (triangular markers) 
corresponding to T1 and T2, respectively. The quasi-site-
specific models are obtained by weighted regression with 
weights given by the site similarity method. For internal and 
external validation, the performance of the site similarity 
method and record similarity method appears to be comparable. 
It is more interesting to observe that the site similarity method 
compares unfavourably to HBM. The explicit identification of 
“similar” sites has apparently reduced the efficacy of HBM. 
More research is needed to understand the reasons for this 
apparent trade-off between explainability and inference (bias 
and precision). 

Figure 8(a) shows that “similar” records identified by the 
site similarity method do not cluster around the Onsøy data in 
the Casagrande plasticity chart as well. When site similarity is 
measured in a 5-dimensional space, the number of “similar” sites 
decreases significantly (more so than what is shown in Fig. 6(b). 
A comparison between Fig. 8a and 9a shows that the quasi-site-
specific model does change when site similarity is measured in a 
different space. The application of site similarity in a 5-
dimensional space appears to improve inference precision in this 
Onsøy example (Fig. 9(b)). 

(a) (b)
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Fig. 7 Quasi-site-specific model based on the site similarity method: (a) training using T1 (weighted regression with T1 carrying a weight 
of 1 and each site in CLAY/10/7490 carrying a weight proportional to its site “similarity” to T1); (b) internal validation V1; (c) 
training using T2 (weighted regression with T2 carrying a weight of 1 and each site in CLAY/10/7490 carrying a weight 
proportional to its site “similarity” to T2); (d) external validation V2. Records with site similarity index > 0.1 are shown in green 
triangular markers. Onsøy training datasets are shown in red circular marker. Onsøy validation datasets are shown in yellow 
circular marker 

              

Fig. 8 Comparison between Onsøy site records (red circular marker) and “similar” CLAY/10/7490 records (green triangular marker) 
using the Casagrande plasticity chart. “Similar” records are defined by a site similarity index > 0.1 computed in: (a) bivariate 
space (Y6, Y9) = (su/σ′v, qt1) and (b) 5-dimensional space (Y3, Y5, Y6, Y8, Y9) = (LI, σ′p/Pa, su/σ′v, Bq, qt1) 

(a) (c)

(b) (d)

(a) (b)
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Fig. 9 Quasi-site-specific model based on the site similarity method applied in a 5-dimensional space (LI, σ′p/Pa, su/σ′v, Bq, qt1): (a) training 
using T1 (weighted regression with T1 carrying a weight of 1 and each site in CLAY/10/7490 carrying a weight proportional to its 
site “similarity” to T1), (b) internal validation V1. Records with site similarity index > 0.1 are shown in green triangular markers. 
Onsøy training datasets are shown in red circular marker. Onsøy validation datasets are shown in yellow circular marker

5.  CONCLUSIONS 
In the absence of site-specific data, an engineer is compelled 

to rely on a generic transformation model to estimate a design 
parameter, such as the correlation between the undrained shear 
strength and the normalized cone tip resistance. There is rarely 
sufficient data to establish a site-specific or local correlation. The 
engineer understands that a generic transformation model is biased 
when applied to a specific site. He/she relies on engineering 
judgment to correct this bias approximately. However, there is no 
judgment possible to correct the generic transformation 
uncertainty which is too large for a specific site.  

Alternately, an engineer may combine site data with data 
from other similar sites to construct a quasi-site-specific model 
based on experience and knowledge of geology. No data-driven 
method is available to construct such a model. This is called the 
“site recognition” challenge in the data-driven site characterization 
(DDSC) research agenda. It is a difficult challenge primarily 
because the attributes of actual site data are MUSIC-3X. 

This paper presents four data-driven methods to construct a 
quasi-site-specific model to estimate the undrained shear 
strength from the normalized cone tip resistance: (1) 
hybridization, (2) hierarchical Bayesian model, (3) record 
similarity method, and (4) site similarity method. The last two 
methods are “explainable” in the sense that the list of “similar” 
records or sites supporting the quasi-site-specific model is made 
known to the engineer. In this way, the engineer can delete 
records/sites deemed unreasonable, thus fostering a meaningful 
engagement in the decision making (estimation of the undrained 
shear strength). The effect of extrapolating the quasi-site-
specific model beyond the range of the training dataset is also 
studied by comparing the performance of these models under 
routine validation (validation dataset is contained within the 
training dataset) and under external validation (validation dataset 
lies outside the training dataset). The hierarchical Bayesian 
model appears to be the best performing method thus far, but it 

suffers from a lack of “explainability”. The hybridization model 
is however robust against extrapolation, because it cannot 
perform worse than the generic model by construction. 

More research is needed to: (1) clarify the relationship 
between data-driven “similarity” and physics-based soil 
classification (e.g., Casagrande plasticity chart, Robertson CPT-
based soil behavior type classification system), (2) ascertain the 
number and/or type of soil properties needed to produce “similar” 
sites that will appear as clusters in soil classification charts (if a 
relationship exists) and/or produce the most accurate quasi-site-
specific model, (3) study the robustness of making inferences 
beyond the range of the training dataset or , and (4) understand the 
trade-off between explainability and inference accuracy (bias and 
precision). Six research problems are posed in this paper to 
illustrate the range of largely unexplored questions underlying the 
site recognition challenge: (1) “best” quasi-site-specific model, (2) 
extrapolation test, (3) quasi-regional clustering, (4) explainability, 
(5) transferability, and (6) compatibility. 
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