EMPIRICAL RELATIONSHIPS OF CPTu RESULTS AND UNDRAINED SHEAR STRENGTH

Akbar Cheshomi ${ }^{1}$

Abstract

Cone penetration testing (CPTu) and pore pressure measurement have long been used to estimate the undrained shear strength $\left(S_{u}\right)$ of clay, although the evaluation of strength from CPTu results in fine-grained soil is mostly empirical. In fact, for various reasons, in-situ methods such as CPTu and laboratory methods may give different results for S_{u} for a specific soil. The present study correlated the results of 22 CPTu and 50 uniaxial compression tests conducted on quaternary alluvial clay from southern Iran. Empirical relationships with acceptable coefficients of correlation between S_{u} and CPT parameters were obtained and values of the empirical cone factors $N_{k}, N_{k t}, N_{k e}$, and $N_{\Delta u}$ are proposed for these clays. A comparison of these values with values proposed in previous studies suggests that the cone factors depend on the type of the reference test used. Although the plasticity and consistency index also affect cone factors, it was not possible to determine an acceptable empirical relationships for these parameters.

Key words: CPTu, undrained shear strength, empirical cone factors.

1. INTRODUCTION

The undrained shear strength $\left(S_{u}\right)$ of soil is a widely used design parameter in engineering; however, the value obtained depends on the testing apparatus and procedure used (Myftaraga and Koreta 2013) as well as the direction of loading, boundary conditions, stress level, sample disturbance, testing method (failure mode), strain rate, stress path and other factors (Bond 2011; Mayne et al. 2009). Uniaxial, triaxial and direct shear tests on undisturbed samples are routine laboratory tests for the determination of S_{u}, whereas the field vane shear test is an in-situ test method favored by many.

The increasing use of the CPTu in ground investigations because of its increased reliability, high speed, cost effectiveness, continuous soil profile make it a valuable tool in characterizing subsurface conditions and in assessing soil properties. This has resulted in the need for methods to determine the value of S_{u} from the test results. Theoretical correlations based upon bearing capacity theory (Terzaghi 1943; de Beer 1977), cavity expansion (Skempton 1951; Vesic 1975), analytical and numerical methods (Ladanyi 1967) and strain path methods (Teh 1987) have been proposed, but because they require the use of many assumptions, they offer no advantage over empirical methods. Empirical methods allow determination of S_{u} using total cone resistance (Eqs. (1) and (2)), effective cone resistance (Eq. (3)) and pore water pressure (Eq. (4)) (Lunne et al. 1997) as follows:

$$
\begin{align*}
& S_{u}=\left(q_{c}-\sigma_{v}\right) / N_{k} \tag{1}\\
& S_{u}=\left(q_{t}-\sigma_{v}\right) / N_{k t} \tag{2}\\
& S_{u}=\left(q_{E} / N_{k e}\right)=\left(q_{t}-u_{2}\right) / N_{k e} \tag{3}\\
& S_{u}=\left(\Delta u / N_{\Delta u}\right)=\left(u_{2}-u_{0}\right) / N_{\Delta u} \tag{4}
\end{align*}
$$

Manuscript received July 10, 2017; revised October 23, 2017; accepted December 6, 2017.
${ }^{1}$ Assistant Professor (corresponding author), Department of Structural and Engineering Geology, School of Geology, College of Science, University of Tehran, Iran (e-mail: a.cheshomi@ut.ac.ir).
where q_{c} is cone resistance, q_{t} is corrected cone resistance, q_{E} is effective cone resistance, u_{2} is pore pressure measured immediately behind the cone tip, u_{0} is hydrostatic pore water pressure, σ_{v} is total vertical overburden stress and $N_{k}, N_{k t}, N_{k e}$, and $N_{\Delta u}$ are empirical cone factors that depend on the geological conditions and type of reference test used. Table 1 summarizes the values proposed by different researchers for these empirical cone factors. In addition, Karlsrud et al. (1997) has proposed a method for determining S_{u} by averaging the results from different methods, as shown in last row in Table 1.

Quaternary geological interpretations prompted by the development of construction on recent alluvium are important (Hawkins 1994). Yim (1993) used geophysical methods, field sampling and field and laboratory testing to study offshore quaternary sediment in Hong Kong. Zastrozhnov et al. (2017) developed regional charts for quaternary deposit in European Russia. Fakher et al. (2007) proposed classification for Tehran alluvium based on a combination of geological and geotechnical data. He et al. (2017) investigated alluvium sediment in Longshan, China and found sediment ranging from boulders to clay in this area. El May et al. (2015) studied geotechnical characterization of quaternary alluvial deposits in Tunis. Ku et al. (2010) studied the reliability of CPT I_{c} as an index for mechanical behavior classification of in quaternary alluvium deposits (I_{c} is consistency index). Zein (2017) proposed a relationship between undrained shear strength and CPT for fine grained soil from three Sudanese states with different OCR, over consolidation ratio, values.

Hajimohammadi et al. (2010) presented a relationship between shear wave velocity and cone tip resistance in the silty clay soil of southern Iran. Cheshomi and Ezzedi (2016) proposed a new soil classification based on CPTu test results for some parts of the quaternary alluvium in southern Iran. Cheshomi et al. (2015) compared the results of 43 dissipation tests and 35 onedimensional laboratory consolidation tests in quaternary alluvium in southern Iran with C_{V} values obtained from CPTu and onedimensional laboratory consolidation testing (C_{V} is coefficient of consolidation).

Table 1 Values proposed by researchers for empirical cone factors

Reference	Reference test	N_{k}	$N_{k t}$	$N_{k e}$	$N_{\Delta u}$	Soil type	Location
Kjekstad et al. (1978)	Triaxial compression	17	-	-	-	Non-fissured over-consolidated clays	North Sea
Lunne and Kleven (1981)	Field vane shear	$11 \sim 19$	-	-	-	Normally consolidated marine clays	North Sea
Senneset et al. (1982)		-	-	6~12	-	Clays (3\% < PI < 50\%)	
Lunne et al. (1985)	Triaxial compression	-	-	1 ~ 13	$4 \sim 10$	$\begin{gathered} \text { Clays } \\ \left(N_{k e} \text { varies with } B_{q}\right) \end{gathered}$	North Sea
Aas et al. (1986)	Triaxial compression, triaxial extension and direct shear	-	$8 \sim 16$	-	-	$\begin{aligned} & \text { Clays }(3 \%<P I<50 \%) \\ & \left(N_{k t} \text { increases with } I_{p}\right) \end{aligned}$	Norway
La Rochelle et al. (1988)	Vane shear	-	11~18	-	$7 \sim 9$	Sensitive clay No correlation found between $N_{k t} \text { and } P I$	Canada
Rad and Lunne (1988)	Triaxial compression	-	$8 \sim 29$	-	-	Clays $N_{k t}$ varies with OCR	Nigeria
Powell and Quarterman (1988)	Triaxial compression	-	10~20	-	-		
Karlsrud (1996)	Triaxial compression	-	$6 \sim 15$	$2 \sim 10$	$6 \sim 8$	Soft to medium stiff clay ($N_{k t}$ decreases with B_{q})	Norway
Jörß (1998)		15 ~ 20	-	-	-	Marine clay	Northern Germany
Chen (2001)		5	-	-	-	Klang clay	Indonesia
Gebreselassie (2003)		7.6 ~ 28.4	-	-	-	Sludge, marin young clay, lacustrine soft soil, quaternary clay and clay stone, tertiary clay	Germany
Hong et al. (2010)	Triaxial compression	-	7 ~ 20	$3 \sim 18$	$4 \sim 9$	Busan clay, $25 \%<P I<40 \%$	Korea
Almeida et al. (2010)	Vane shear	-	$4 \sim 16$	-	-	Very soft clay High plasticity, 42% < PI < 400%	Brazil
Average value Karlsrud et al. (1997)		15.2	13.5	8.1	7.1		

Note: PI: plasticity index; OCR: over consolidation ratio; B_{q} : piezocone pore pressure parameter

In the present study, S_{u} was determined by comparing the results of 50 uniaxial tests and the cone penetration test extracted from the corresponding depths in southern Iran. Values for the empirical cone factors ($N_{k}, N_{k t}, N_{k e}, N_{\Delta u}$) are proposed for the fine-grained soil tested. The effects of soil plasticity and stiffness on cone factors were also investigated. The values obtained in the present study were compared with the values proposed by different researchers.

2. STUDY AREA

Sampling and testing was performed in southern Iran, as shown in Fig. 1(a). Table 2 shows the number of boreholes and tests performed in the area and Fig. 1(b) shows the location of the boreholes and CPTu tests. Geotechnical investigation in this area was conducted with the aim of industrial construction. Disturbed and undisturbed samples were taken (usually at intervals of 2 to 3 m). The geological models shown in Fig. 2 were derived based on the results of classification tests.

This area has a surface layer (fill material, sand and gravel) with a thickness of about 2 m . Below this, the subsurface material consists mainly of fine-grained layers (lean clay, little fat clay and clayey silt) with low to high plasticity; thus, the soil variability is low. The groundwater table observed in boreholes was at a depth of $3 \sim 5 \mathrm{~m}$ below the surface. Below a depth of about 17.5 m , silt and sand layers of variable thickness (0.2 to 1.3 m) were observed in the fine sediment. In these areas, many seasonal and permanent rivers have carried large amounts of sediment eroded from the highland and have deposited the fine material on the plain. This process is the main factor in evaluation of the alluvium from the quaternary period.

(a) Location of the study area in southern Iran

(b) Borehole and CPTu tests location

Fig. 1 Sample and test area in southern Iran

Fig. 2 Geological model for the area studied (in this area after the top soil is a layer of lean clay to depth of about 17.5 meter)

Table 2 Geographical location of study area and number of boreholes and tests performed in this area

Number of boreholes	Depth of boreholes (m)	Number of uniaxial tests	Number of CPTu tests	Geographical coordinates (in center area)	Location
50	$15 \sim 30$	50	22	$30^{\circ} 74^{\prime} 38^{\prime \prime} \mathrm{N}$ $48^{\circ} 42^{\prime} 41^{\prime \prime} \mathrm{E}$	Khouzestan plain

3. TEST RESULTS

3.1 Identification Tests

Identification testing was performed on all samples and comprised particle size analysis, Atterberg limits and soil classification tests according to ASTM D422-63:2007, ASTM D4318:2010 and ASTM D2487:2010. Table 3 shows the test results, including the designations using the unified classification system (CL and CH), determination of the liquid limit ($L L$) and plasticity (PI) and consistency indices ($C I$). Figure 3 shows the changes in the liquid limit, plasticity index and consistency index by depth for all samples. The liquid limit ranged from 25 to 55 , the plasticity index from 8 to 28 and the consistency index from 0.18 to 1.5 . As shown, the values of $L L, P I$, and $C I$ varied greatly at any specific depth and did not show a recognizable trend by depth.

3.2 Uniaxial Compression Testing

This test was performed in accordance with ASTM D2166:2006 on undisturbed samples 38 mm in diameter and 76 mm high at loading rates of 1.5% to 2% strain ($1.5 \mathrm{~mm} / \mathrm{min}$). This test method covers the determination of the unconfined compressive strength of cohesive soil, using strain-controlled application of the axial load. This test method provides an approximate value of the strength of cohesive soils in terms of total stresses. The bore holes were drilled using the rotary method and at $2 \sim 3 \mathrm{~m}$ intervals, thin-walled tube sampling (undisturbed) was carried out. The results of all the UCS tests are summarized in Table 3. Figure 4 shows that S_{u} varied from 17.85 to 104.38 kPa .

Table 3 Physical properties of soil, uniaxial test results and CPTu parameters

BH No.	Depth (m)	USCS	Fine content (\%)	$\begin{gathered} L L \\ (\%) \end{gathered}$	$\begin{gathered} P I \\ (\%) \end{gathered}$	CI	$\begin{gathered} q_{u} \\ (\mathrm{kPa}) \end{gathered}$	$\begin{gathered} S_{u} \\ (\mathrm{kPa}) \end{gathered}$	CPTu data (kPa)		
									q_{c}	f_{s}	u
BH-1	7 ~ 7.5	CL	98	41	19	0.53	57.68	28.84	986	20	147
BH-3	$11 \sim 11.4$	CL	99	38	16	0.19	89.27	44.64	1204	27	234
BH-3	$7 \sim 7.5$	CL	99	37	15	0.53	144.21	72.1	1799	0	74
BH-4	$14 \sim 14.4$	CL	100	34	15	0.47	124.98	62.49	2108	80	326
BH-4	4.6 ~ 4.9	CL	99	30	11	0.36	75.54	37.77	926	0	108
BH-5	$10 \sim 10.45$	CL	100	40	21	0.38	109.87	54.94	1276	19	273
BH-11	9 ~ 9.45	CL	98	28	8	1.25	82.4	41.2	1366	7	219
BH-12	$11.5 \sim 12$	CL	97	40	19	0.89	151.07	75.54	2018	52	347
BH-12	$7 \sim 7.5$	CL	94	34	15	1	140.09	70.04	1826	102	335
BH-14	11~11.45	CL	100	49	23	1.09	178.54	89.27	2222	67	419
BH-15	7 ~ 7.4	CL	99	33	14	0.93	112.62	56.31	1323	31	202
BH-16	$14 \sim 14.4$	CL	99	30	11	1	188.16	94.08	2360	76	488
BH-16	$7 \sim 7.5$	CL	98	33	17	0.47	74.16	37.08	1040	32	192
BH-16	9 ~ 9.5	CL	95	33	12	0.75	115.37	57.68	1605	36	261
BH-17	$12 \sim 12.5$	CL	93	25	10	0.2	130.47	65.24	1469	50	273
BH-17	$8.5 \sim 9$	CL	78	29	12	1	50.82	25.41	956	24	177
BH-18	$10.5 \sim 11$	CL	83	42	19	1.05	130.47	65.24	1863	22	304
BH-19	$13.5 \sim 14$	CL	98	33	13	1.08	64.55	32.27	1168	52	268
BH-22	$13.4 \sim 13.7$	CL	84	45	19	1.21	203.26	101.63	2165	35	419
BH-26	$8.5 \sim 9$	CL	100	39	17	1	148.33	74.16	1813	107	358
BH-27	$12 \sim 12.5$	CL	97	35	16	1.06	185.41	92.7	1995	59	433
BH-29	$13.5 \sim 14$	CL	100	39	17	0.76	208.76	104.38	2170	75	472
BH-29	$2.5 \sim 3$	CL	100	44	22	1	104.38	52.19	1423	26	11
BH-29	$7.5 \sim 8$	CL	99	40	17	0.88	74.16	37.08	1245	34	158
BH-30	$13 \sim 13.5$	CL	99	32	13	0.69	123.2	61.6	1946	35	299
BH-31	13.5 ~ 14	CL	99	36	16	0.75	57.68	28.84	802	34	291
BH-32	$12.5 \sim 13$	CL	100	38	18	0.44	49.44	24.72	956	44	212
BH-32	8 ~ 8.5	CL	100	32	14	0.86	83.78	41.89	1395	40	130
BH-33	$17 \sim 17.5$	CL	99	43	21	1.14	171.68	85.84	2193	121	453
BH-35	11.5 ~ 12	CL	100	31	9	0.67	35.71	17.85	791	35	158
BH-36	$7 \sim 7.5$	CH	99	53	28	0.96	137.34	68.67	1300	24	289
BH-36	$11 \sim 11.5$	CL	100	36	15	1	107.13	53.56	1453	34	307
BH-37	16.5 ~ 17	CL	99	40	18	0.83	104.38	52.19	1436	59	353
BH-37	$11 \sim 11.5$	CL	99	33	14	0.64	100.26	50.13	1445	33	260
BH-40	$17.5 \sim 18$	CL	98	34	13	0.46	98	49	1546	63	334
BH-42	3 ~ 3.5	CL	99	28	10	1.2	111.25	55.62	1327	65	152
BH-44	$7.5 \sim 8$	CL	98	45	20	1.15	123.61	61.8	1838	21	320
BH-44	3 ~ 3.5	CH	99	53	24	1.13	135.97	67.98	1795	0	196
BH-46	11.5 ~ 12	CL	95	28	10	0.8	104.38	52.19	1316	18	263
BH-48	$12 \sim 12.5$	CL	100	49	25	0.92	182.66	91.33	1915	42	390
BH-48	$5.5 \sim 6$	CL	99	40	17	1.18	103.01	51.5	1062	34	208
BH-49	15 ~ 15.5	CL	98	34	15	0.73	178.54	89.27	2240	70	442
BH-49	$8 \sim 8.5$	CL	99	38	17	0.94	38.46	19.23	591	12	132
BH-50	$7.5 \sim 8$	CL	99	38	21	0.76	54.94	27.47	800	20	154
BH-52	$7.5 \sim 8$	CL	100	29	10	0.7	87.9	43.95	1131	32	204
BH-53	$12.5 \sim 13$	CL	99	28	8	0.63	86.52	43.26	1407	24	231
BH-54	12 ~ 12.5	CL	99	34	14	1	37.08	18.54	699	16	174
BH-55	$7 \sim 7.5$	CL	100	35	13	1.15	145.58	72.79	1506	41	270
BH-57	14~14.5	CL	98	42	18	0.67	178.54	89.27	1964	104	474
BH-70	$7 \sim 7.5$	CL	98	35	13	1.46	126	63	1278	46	277
Max.			100	53	28	1.46	208.76	104.38	2360	121	488
Min.			78	25	8	0.19	35.71	17.85	591	0.00	108
Ave.			98	37	16	0.84	114.15	57.07	1489	42	273

As with the classification data, the results span a range at any specific depth and showed a slight increase by depth. Figure 5 shows the distribution consistency of soil in the study areas. The stiffness of the clayey soil ranged from very soft to hard.

Fig. 3 Values of (a) liquid limit (LL); (b) plasticity index (PI); and (c) consistency index (CI) of samples

Fig. 4 Values of undrained shear strength $\left(S_{u}\right)$ obtained from the uniaxial tests

Fig. 5 Distribution consistency of soil in the study area. The stiffness of the clayey soils ranged from very soft to hard

4. CONE PENETRATION TESTING

CPTu was carried out in accordance with ASTM D5778: 2012. In this test, a penetrometer tip with a conical point having a 60° apex angle and cone base area of $10 \mathrm{~cm}^{2}$ advanced at a constant rate of $20 \mathrm{~mm} / \mathrm{sec}$ through the soil. The force on the cone required to penetrate the soil is measured as cone resistance $\left(q_{c}\right)$.

Sleeve resistance $\left(f_{s}\right)$ represents the sleeve strength against penetration and is calculated by dividing the measured axial force by the sleeve surface area. The pore water pressure induced during advancement of the cone is measured using a pressure transducer $\left(u_{2}\right)$. Total cone resistance q_{t} is given as:

$$
\begin{equation*}
q_{t}=q_{c}+u_{2}(1-a) \tag{5}
\end{equation*}
$$

According to the definition offered by Lunne et al. (1997), cone area ratio a, is approximately equal to the ratio of the crosssectional area of the load cell or shaft divided by the projected area of the cone. The CPTu equipment used was manufactured by van den Berg, A.P.

Figure 6 shows examples of CPTu profiles of the successive CPTu testing conducted from ground level to the desired depth and the relevant q_{c}, f_{s}, and u_{2} values are shown in Table 3. Based on the profile, the top soil was followed by a layer of lean clay to a depth of 17.5 m . A silty sand layer about 1 m in thickness (at depths of 11 and 17.5 m) was then observed. Similar profiles for other CPTu tests have been produced and the following steps for comparison of S_{u} and CPTu parameters have been performed:

- The borehole nearest to the CPTu is selected according to studies conducted by Ku et al. (2010). Because soil variability in this area soil is low, the distance between the selected borehole and the CPTu is less than 3 m .
- A uniaxial test carried out on undisturbed sample is obtained from side-by-side boreholes
- The average q_{c}, q_{t}, f_{s}, and u_{2} values were extracted from the CPTu profile at the same depth at which the uniaxial test is done.

Table 3 lists the depths at which uniaxial testing was performed and the average values for q_{c}, q_{t}, f_{s}, and u_{2} for the same depth are presented as well. Figure 7 shows the average values for q_{c}, q_{t}, f_{s}, and u_{2} versus depth.

Fig. 6 Examples of CPTu profiles $\left(q_{c}, f_{s}, \boldsymbol{u}_{2}\right.$, and $\left.\boldsymbol{R}_{f}\right)$. After the top soil is a layer of lean clay to depth of 17.5 m with silty sand layer with about $1 \mathbf{m}$ thickness (at a depth of 11 and 17.5 meter)

Fig. 7 Values of (a) q_{c}, (b) q_{t}, (c) u_{2} and (d) f_{s} with respective depth

5. DETERMINATION OF EMPIRICAL CONE FACTORS

Empirical cone factors $N_{k}, N_{k t}, N_{k e}$, and $N_{\Delta u}$ were determined from the data listed in Table 3 using the S_{u} values from uniaxial testing as a reference.

5.1 Empirical Cone Factor $\boldsymbol{N}_{\boldsymbol{k}}$

Figure 8 shows the correlations for N_{k} using S_{u} from uniaxial testing versus $q_{c}-\sigma_{v}$. As shown, the upper and lower boundaries for N_{k} are 29 and 18, respectively. The proposed best value for the soil in the study areas was 22 . Equation (6) describes the empirical relationship between these two variables as:

$$
\begin{equation*}
S_{u}=\left(q_{c}-\sigma_{v}\right) / 22 \quad R^{2}=0.83 \tag{6}
\end{equation*}
$$

5.2 Empirical Cone Factor $\boldsymbol{N}_{\boldsymbol{k} \boldsymbol{t}}$

Figure 9 shows the results of determination of $N_{k t}$ using S_{u} from uniaxial testing versus $q_{t}-\sigma_{v}$. As shown, $N_{k t}$ varied from 18 to 31 for the study areas, with the best value equaling 23 . Equation (7) describes the empirical relationship between these two variables as:

$$
\begin{equation*}
S_{u}=\left(q_{t}-\sigma_{v}\right) / 23 \quad R^{2}=0.84 \tag{7}
\end{equation*}
$$

Fig. $8 S_{u}$ from uniaxial tests vs. $\left(q_{c}-\sigma_{v}\right)$ for determination of N_{k}. Based on the upper and lower boundaries max. and min. N_{k} are 29 and 18. The best value is 22

Fig. $9 S_{u}$ from uniaxial testing vs. $\left(q_{t}-\sigma_{v}\right)$ for determination of $N_{k t}$. Based on the upper and lower boundaries max. and $\min . N_{k t}$ are 31 and 18. The best value for $N_{k t}$ is 23

5.3 Empirical Cone Factor $\boldsymbol{N}_{k e}$

Figure 10 plots the shear strength obtained in the laboratory versus the effective cone resistance obtained from CPTu to determine the $N_{k e}$. The best value for the factor was 22 , which is equivalent to the value for $N_{k}\left(N_{k}=N_{k e}=22\right)$. The range of variation of this factor based on the upper and lower boundaries as shown in Fig. 10 is between 17 and 31, which is slightly wider than the range for N_{k}. Equation (8) describes the empirical relationship between these two variables as:

$$
\begin{equation*}
S_{u}=\left(q_{E} / N_{k e}\right)=\left(q_{t}-u_{2}\right) / 22 \quad R^{2}=0.79 \tag{8}
\end{equation*}
$$

Fig. $10 S_{u}$ from uniaxial testing vs. $\left(q_{t}-u_{2}\right)$ for determination of $N_{k e}$. Based on the upper and lower boundaries max. \& min. $N_{k e}$ are 31 and 17. The best value for the factor is 22

5.4 Empirical Cone Factor $N_{\Delta u}$

Figure 11 plots the shear strength obtained from uniaxial testing versus excess pore water pressure to determine $N_{\Delta u}$. The value for $N_{\Delta u}$ varies from 2.8 to 5.9 and the best value was 3.8. As seen, the amount and the range of variation of this factor is significantly smaller than for the other three factors. Equation (9) describes the empirical relationship between these two variables as:

$$
\begin{equation*}
S_{u}=\left(\Delta u / N_{\Delta u}\right)=\left(u_{2}-u_{0}\right) / 3.8 \quad R^{2}=0.83 \tag{9}
\end{equation*}
$$

Fig. $11 S_{u}$ from uniaxial tests vs. Δu for determination of $N_{\Delta u}$. This factor varies from 2.8 to 5.9 , and the best value is 3.8

Table 4 shows the best value and the range of the cone factors obtained for the study area in Figs. 8 to 11. In these figures, the upper and lower bounds are plotted to place the majority of the data between two lines, and these lines cross the origin of the coordinate.

Table 4 Proposed empirical cone factors using uniaxial test as reference

	N_{k}	$N_{k t}$	$N_{k e}$	$N_{\Delta u}$
Minimum	18	18	17	2.8
Best value	22	23	22	3.8
Maximum	29	31	31	5.9

SPSS software was employed to evaluate the normality of the variable and meaningfulness of the empirical relationships.

Table 5 shows that the skewness and kurtosis of the variable fall between -2 and 2 . The variable can be said to be normally distributed.

Table 5 Skewness and Kurtosis values for variablse

	Skewness		Kurtosis	
	Statistic	Std. Error *	Statistic	Std. Error
S_{u}	0.206	0.337	-0.691	0.662
q_{c}	0.069	0.337	-0.927	0.662
u_{2}	0.409	0.337	-0.715	0.662
q_{t}	0.066	0.337	-0.922	0.662
σ_{v}	-0.075	0.337	-0.936	0.662
Δu	0.492	0.337	-0.796	0.662

The Std. Error or standard error of a statistic is the standard deviation of its sampling distribution or an estimate of that standard deviation.

Table 6 shows the values obtained from the t-test for the empirical relations (Eqs. (6) to (9)). Given that the meaningfulness is less than the amount of error (this test considered an error of 5%), the correlation coefficient was meaningful for the relationships between these parameters.

Table 6 Results of \boldsymbol{t}-test to determine meaningfulness of proposed relationships

Model	Unstandardized coefficients		Standardized coefficients	t	Sig.*
	B^{*}	Std. Error	Beta *		
$q_{c}-\sigma_{v}$	0.048	0.003	0.916	15.846	.000
$q_{t}-\sigma_{v}$	0.048	0.003	0.922	16.450	.000
$q_{t}-u_{2}$	0.051	0.004	0.896	13.949	.000
Δu	0.245	0.016	0.915	15.750	.000

Beta coefficients is the estimates resulting from a regression analysis that have been standardized. B coefficients is the regression carried out on original (unstandardized. Sig. is level of significance. The Sig of .000 means the results are highly significant.

6. RELATIONSHIP BETWEEN CONE FACTORS AND PHYSICAL PROPERTIES

Figures 12 and 13 show the plasticity and consistency index
(b)

(d)

Fig. 12 Plasticity index vs. cone factor for the study area: (a) $N_{k}-P I$; (b) $N_{k t}-P I$; (c) $N_{k e}-P I$; (d) $N_{\Delta u}-P I$

Fig. 13 Consistency index vs. cone factor for study areas: (a) $N_{k}-C I$; (b) $N_{k t}-C I$; (c) $N_{k e}-C I$; (d) $N_{\Delta u}-C I$.
values for different cone factors. There is no empirical relationship with acceptable correlation between plasticity index and the cone factors. It is not possible to offer an empirical relationship with an acceptable correlation between the plasticity index, consistency index and the cone factors. Aas et al. (1986) reported that the empirical cone factor has a direct relationship with the plasticity index, but subsequent studies have not confirmed this relationship (Remai 2013).

7. COMPARISON OF RESULTS WITH PREVIOUS RESEARCH

Figures 14(a) ~ 14 (d) compare the values determined for the cone factors in the present study with those provided by previous research (Table 1). The values obtained for $N_{k}, N_{k t}$, and $N_{k e}$ from the present study are slightly higher than those determined in previous studies and the value obtained for $N_{\Delta u}$ is slightly less than those determined in previous studies.

Fig. 14 Cone factors from present study vs. those from previous studies

The reference tests chosen in the earlier studies were the triaxial and field vane shear tests. In the present study, the uniaxial test was used as the reference test. It can be concluded that a major reason for the difference in value is the type of reference test. Other possible reasons are soil disturbance in the process of sampling and preparation of laboratory testing and the material properties of the study area. There are overall similarities between the values obtained in the present study and those form previous studies. There is also a significant and acceptable correlation between the variables.

8. CONCLUSIONS

A comparison of the results of 50 uniaxial and cone penetration tests on quaternary fine-grained alluvium (CL and CH) soil with q_{u} values of 35.71 to 208.76 kPa and $P I$ values of 8 to 28 in southern Iran indicates that there is an acceptable and significant correlation between the undrained shear strength of the soil and the cone parameters $\left(q_{c}, q_{t}, f_{s}\right.$, and $\left.u_{2}\right)$. The cone factors proposed for the study area were $N_{k}=N_{k e}=22, N_{k t}=23$, and $N_{\Delta u}=3.8$. The results for these factors were compared with the results for cone factors presented by previous studies and showed only a slight difference, which could be the result of the use of different reference tests or from soil and local site specifications of the areas under study. The reference tests used in the previous studies were the triaxial and field vane shear tests. The present study used the uniaxial test as the reference test, so the test condition and sample disturbance in these tests differed. A comparison of cone factors with physical soil properties, such as the plasticity and consistency indices, did not reveal a reliable correlation.

REFERENCES

Aas, G., Lacasse, S., Lunne, T., and Hoeg, K. (1986). "Use of in situ tests for foundation design in clay." Proc., Situ '86 ASCE Special Conference on Use of In Situ Tests in Geotechnical Engineering, ASCE, Special Publication, Blacksburg, Virginia, 6, 1-30.
Almeida, M., Marques, M., and Baroni, M. (2010). "Geotechnical parameters of very soft clays from CPTu," Proc., 2nd International Symposium on Cone Penetration Testing, Huntington Beach, California, Online paper, 2-46.
ASTM D2166/D2166M-13, (2013). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA.
ASTM D2487-11, (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA.
ASTM D4318, (2010). Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. ASTM International, West Conshohocken.
ASTM D422-63, (2007). Standard Test Method for Particle Size Analyses of Soils. ASTM International, West Conshohocken.
ASTM D5778-12, (2012). Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils. ASTM International, West Conshohocken, PA.
Bond, A.J. (2011). "A procedure for determining the characteristic value of a geotechnical parameter." Proc., 3rd International Symposium on Geotechnical Safety and Risk, Munich, Germany, 419-426.
Chen, C. (2001). "Evaluating undrained shear strength of Klang clay from cone penetration test." Proc., International Conference on in situ Measurement of Soil Properties and Case Histories,

Parahyangan Catholic University, 141-148
Cheshomi, A. and Ezzedin, Z. (2016). "Development of soil classification based on CPTu test Results for some parts of Southern Iran." Journal of Engineering Geology, 10(3), 3587-3610. (in Persian).
Cheshomi, A., Ezzedin, Z., and Moradi Hersini, K. (2015). "Comparison between the coefficient of consolidation obtained from CPTu test and one dimensional laboratory consolidation test." Journal of Engineering Geology Society, 8(3-4), 81-94 (in Persian).
De Beer, E. (1977). "Static cone penetration testing in clay and loam." Proc., Sonder Symposium, Fugro, 15-23.
El May, M., Souissi, Ben Said, H., and Dlala, M. (2015). "Geotechnical characterization of the quaternary alluvial deposits in Tunis City (Tunisia)." Journal of African Earth Sciences, 108, 89-100. https://doi.org/10.1016/j.jafrearsci.2015.05.003
Fakher, A., Cheshomi, A., and Khamechian, M. (2007). "The addition of geotechnical properties to a geological classification of coarse grain alluvium in a pediment zone." Quarterly Journal of Engineering Geology and Hydrogeology, 40, 163-174. 163-174. https://doi.org/10.1144/1470-9236/06-029
Gebreselassie, B. (2003). Experimental, Analytical and Numerical Investigations of Excavations in Normally Consolidated Soft Soils. Ph.D. Dissertation, University of Kassel, Kassel, Germany.
Hajimohammadi, A.Hosseini, M. and Cheshomi, A. (2010). "Seismic piezocone interpretation for shear wave velocity determination in the Persian Gulf." Environmental Earth Science, 61(4), 813-820. https://doi.org/10.1007/s12665-009-0393-x
Hawkins, A.B. (1994). "Construction on recent alluvial: The importance of a correct interpretation of Quaternary geology." Engineering Geology, 37(1), 67-77. https://doi.org/10.1016/ 0013-7952(94)90083-3
He, X., Zhang, X., He, Z., Jia, L., Ye, P., and Zhao, J. (2017). "Late quaternary alluvial fan terraces: Langshan, Inner Mongolia, China." Geomorphology, 286, 34-44. https://doi.org/10.1016/ j.geomorph.2017.03.003

Hong, S., Lee, M., Kim, J., and Lee, W. (2010). "Evaluation of undrained shear strength of Busan clay using CPT." Proc., 2nd International Symposium on Cone Penetration Testing, Huntington Beach, California, Online paper 2-23.
Jörß, O. (1998). "Erfahrungen bei der Ermittlung von cu-Werten mit der Hilfe von Drucksondierungen in bindigen Böden." Geotechnik, 21, 26-27.
Karlsrud, K., Lunne, T., and Brattlieu, K. (1996). "Improved CPTu correlations based on block samples." Proc., Norwegian Geotechnical Conference, Reykjavik, Iceland, 1, 195-201.
Kjekstad, O., Lunne, T., and Clausen, C.J.F. (1978). "Comparison between in situ cone resistance and laboratory strength for overconsolidated North Sea claysm." Marine Geotechnology, 3(1), 23-36. https://doi.org/10.1080/10641197809379792
$\mathrm{Ku}, \mathrm{C} . S$. , Juang, C.H., and Ou, C.Y. (2010). "Reliability of CPT I_{c} as an index for mechanical behaviour classification of soils." Geotechnique, 60(11), 861-875. https://doi.org/10.1680/geot. 09.P. 097

La Rochelle, P., Zebdi, P.M., Leroueil, S., Tavenas, F., and Virely, D. (1988). "Piezocone tests in sensitive clays of eastern Canada." Proc., International Symposium on Penetration Testing, Rotterdam, 2, 831-841.
Ladanyi, B. (1967). "Deep punching of sensitive clays." Proc., 3rd Pan American Conference on Soil Mechanics and Geotechnical Engineering, Venezuela, Sociedad Venezolana de Mecánica del Suelo e Ingeniería de Fundaciones, 533-546.
Lunne, T. and Kleven, A. (1981). "Role of CPT in North Sea foundation engineering." Symposium on Cone Penetration Engineering Division, Orlando, ASCE, 49-75.
Lunne, T., Christoffersen, H., and Tjelta, T. (1985). "Engineering use
of piezocone data in North Sea clays." Proc., International Conference on Soil Mechanics and Foundation Engineering (CSMFE), San Francisco, 11(2), 907-912.
Lunne, T., Robertson, P.K., and Powell, J.J.M. (1997). Cone Penetration Testing in Geotechnical Practice. Blackie Academic \& Professional Publishing, 312.
Mayne, P., Coop, M., Springman, S., Huang, A., and Zornberg, J. (2009). "Geomaterial behavior and testing." Proc., 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 4, 2777-2872.
Myftaraga, E. and Koreta, O. (2013). "Characteristic shear strength parameters derived from cone penetration test." 2nd International Balkans Conference on Challenges of Civil Engineering, Tirana, Albania, 1182-1193.
Powell, J.J.M. and Quarterman, R.S.T. (1988). "The interpretation of cone penetration tests in clays, with particular reference to rate effects." Proc., International Symposium on Penetration Testing, Orlando, 2, 903-910.
Rad, N.S. and Lunne, T. (1988). "Direct correlations between piezocone test results and undrained shear strength of clay." Proc., International Symposium on Penetration Testing, Orlando, 2, 911-917.
Rémai, Z. (2013). "Correlation of undrained shear strength and CPT resistance." Periodica Polytechnica, 57(1), 39-44. https:/doi.org/ 10.3311/PPci. 2140

Senneset, K., Janbu, N., and Svano, G. (1982). "Strength and deformation parameters from cone penetration tests." Proc., 2nd European Symp. on Penetration Testing, Balkema, 863-870.
Skempton, A. (1951). "The bearing capacity of clays. "Proc., Building Research Congress, London, 180-189.
Teh, C.I. (1987). An Analytical Study of the Cone Penetration Test. Ph.D. Dissertation, Department of Civil Engineering, Oxford University.
Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley and Sons, 503.
Vesic, A. (1975). Principles of Pile Foundation Design. Duke University, Durham, NC.
Yim, W.W.S (1994). "Offshore quaternary sediments and their engineering significance in Hong Kong." Engineering Geology, 37, 31-50. https://doi.org/10.1016/0013-7952(94)90080-9
Zastrozhnov, A., Danukalova, G., Shick, S., and Kolfshoten, T. (2017). "State of stratigraphic knowledge of quaternary deposits in European Russia: Unresolved issues and challenges for further research." Quaternary International. 478, 4-26. https://doi.org/ 10.1016/j.quaint.2017.03.037

Zein, A.M. (2017). "Estimation of undrained shear strength of fine grained soils from cone penetration resistance." International Journal of Geo-Engineering, https://doi.org/10.1186/s40703-017-0046-y

