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ABSTRACT 

This article is mainly devoted to pile defect identification and classification. The main objective of the work is to improve the 

pile features. Accordingly, a novel feature based on higher order statistical moments is proposed in this paper. The stress wave 

reflected signals are possessed by wavelet packet transform method. Three higher order statistical parameters—variance, skewness, 

and kurtosis are calculated in each wavelet packet band of the decomposed signals. The sliding window method is proposed to 

extract characteristics in every time interval. In particular, the Principal Component Analysis (PCA) is used to reduce dimension of 

the merged feature and eliminate the relevance among them. Then the features are fed into Support Vector Machine (SVM). 

Compared with three other existing features and the 42-dimensional feature, the multi-higher order moment feature achieves the 

highest classification accuracy which reaches 98%. The simulation results demonstrate that the proposed feature can be used as a 

suitable tool for pile defect detection. It is simple and effective. 
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1.  INTRODUCTION 

There is no denying that a firm pile foundation is the    

essential base of buildings. Pile foundation supports the building 

and guarantees the users’ safety. However, in recent years, the 

defective pile rate has already reached 20% in China. In order to 

improve the quality of project, these defective piles should be 

identified and classified.  

At present, the low strain integrity testing method is  

commonly used in pile quality detection. Several researchers 

have investigated the stress wave reflected signals by pattern 

recognition, mathematical theories, computer technology and 

other methods. During the whole process, feature extraction is a 

key step. A good and sensitive feature affects the sequent defect 

diagnosis as well as the discrimination accuracy directly. It not 

only can compress data but also remain main information of  

original signals. In previous studies, most of the features were 

power spectral density (Cai et al. 2002), wavelet coefficients 

(Pan et al. 2006), and variance (Kang et al. 2010). There is only 

one feature about entropy (Kang et al. 2015) is proposed in re-

cent years. Apparently, these features are barren and not enough 

to reveal characteristics of original signals. Therefore there are a 

lot of useful information that need to be mined in the stress wave 

reflected signals. A novel feature has yet to be found. 

To address this issue, the purpose of this paper is extracting 

more appropriate features. Due to the fact that the reflected  

signals are of nonlinearity and non-Guassianness, we extracted 

higher order statistics, which are very useful in problems where 

either non-Gaussianity, or nonlinearities, and have good ability to 

overcome the noise. Then, the non-Guassianness features are 

available, and a lot of useful information in the reflected signals 

can be extracted (Mendel and Jerry 1991). 

First, the wavelet packet is applied to process the stress 

wave reflected signals. Then, the higher order moment features at 

different wavelet bands are extracted by the sliding window 

method. Since the number of feature vectors are excessive, PCA 

is used to reduce dimension of the features. The combination of 

variance, skewness, and kurtosis are fed into the SVM for   

classification. 

An outline of this paper is as follows: Section 2 proposes 

algorithms including the wavelet packet transform and higher 

order moment algorithm. Section 3 describes the procedure of 

feature extraction, dimension reduction by PCA and discusses 

defect classification by SVM. Section 4 gives experimental re-

sults, the performance comparisons of conventional features, and 

the proposed feature. Conclusion is presented at last. 

2.  METHODOLOGY 

2.1  Wavelet Packet Transform 

Wavelet is called “numerical microscrope” in signal and 

image processing (Morlet et al. 1982). In recent years, the wave-

let analysis has been applied in many fields, such as signal de-

noising, image compression, feature extraction, and so on. The 

representation of a set of time-dependent data on a wavelet basis 

leads to a special structure of raw data that is localized in the 

frequency and time domains at the same time (Li and Chen 2014). 

Because of these advantages, the pile reflected signals which are 

extremely nonlinear and non-stationary can be processed by 

wavelet. As the extension of wavelet theory, the wavelet packet 

transform (WPT) inherited wavelet bases, and it incorporates 

linear combinations of usual wavelet functions as its bases (Og-

den 1997; Percival and Walden 2000). The wavelet packet trans-

form not only decomposes the low-frequency band but also de-

composes the high-frequency band so that the detail information 

in high-frequency band will not be omitted. Its algorithms are as 

follows. 

Assume that U represents a set, Un(j) is the closure of Un(t), 

U2n(j) is the closure of U2n(t), and Un(t) satisfies the relations as 
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follows: 
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The scaling function relates to the low pass filters with h(k), 

and the wavelet function relates to the high pass filters with g(k) 

(Scholkopf and Smola 2001). When n = 0, U0(t) = (t); when n = 

1, U1(t) = (t). They are orthogonal scaling functions, and wave-

let functions, respectively. 
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2.2  Higher Order Statistics 

In reality, many processes are not Gaussian, such as the pile 

reflected signals in this study. Higher order statistics are good at 

dealing with non-Gaussian or possible nonlinear processes 

(Mendel and Jerry 1991). We used these moments partially be-

cause they are more intuitive than cumulants (Gelb and Andrew 

2010). In this paper, we extracted higher order moments at dif-

ferent wavelet packet bands, including variance, skewness, and 

kurtosis. These higher order moments can reveal the distribution 

of each wavelet packet band. It can extract and seek out hidden 

information contain in the signals using higher order statistics 

parameters which are excellent in many respects, particularly in 

feature extraction for classification (Karaye et al. 2014). 

The third order central moment is skewness. Skewness is a 

statistic which describes the asymmetricity of data distribution. 

When the data is right-skewed distributed, the skewness is  

greater than zero, and when the data is left-skewed distributed, 

the skewness is less than zero. 

Peakness of a distribution is measured by the fourth order 

central moment (Kaur et al. 2016). Generally, the greater kurtosis 

is, the more data concentrate, and the distribution curve shows a 

peak shape. The smaller kurtosis is, the more data disperse, and 

the distribution curve is flat. 

For a signal x, the variance, skewness, and kurtosis are the 

following expressions. Among them,  is the mean,  is the 

standard deviation, and E represents to calculate the mean. 
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3.  SIMULATION AND EXPERIMENT 

In this study, we did simulations by using Matlab, including 

stress wave signals acquisition, feature extraction, recognition 

and classification and so on. The stress wave reflected signal data 

were obtained by finite difference numerical simulation method. 

This method is based on one-dimensional wave theory of 

pile-soil system. The wave equation is established, combined 

with the boundary conditions and initial conditions. Then, obtain 

results by finite differential method, and curves of velocity  

response on the pile top is obtained. Moreover, it has been   

verified that the data obtained by this method are effective and 

accurate (Zhou 2010). The variables in the simulation were pile 

length, pile diameter, elastic wave speed, elastic modulus of the 

pile, and defect location. The duration of simulation of each 

sample was 14.57 ms. 

First, the signals were decomposed by wavelet packet to the 

third level, as a result, each signal was processed into 8     

independent frequency bands, as shown in Fig. 1. These decom-

posed signals in different frequency bands have different charac-

teristics, and each of them is very useful for fault diagnosis. So, 

we analyzed the signals in these bands. In this study, the sam-

pling frequency of stress wave reflected signal is fs = 70281 Hz. 

When the signal is decomposed by wavelet packet to the n-th 

level, the bandwidth fBW of the n-th level can be expressed as Eq. 

(8). 

12

s
BW n

f
f


   (8) 

so that the frequency range of different bands in the n-th level is 

as follows: 

~ ( 1) , 0,1, 2, , 2 1n
BW BWmf m f m    (9) 

where m is the ordinal of frequency band in the n-th level.  

 

 

Fig. 1  3-level wavelet packet tree 

Wavelet packet decompositions of an integrated pile and a 

shrinking pile are shown in Figs. 2 and 3. The distribution of 8 

different wavelet packet bands are given as follows. Their   

dimensions are shown in Figs. 4 and 5; where L represents the 

pile length, and D represents the pile diameter. There is a shrink-

ing defect at L2 meters from the pile top in Fig. 5; the diameter of 

defect is D2 = 0.6 m, and the defect length is L3 = 0.5 m. 

It is known from Fig. 3 that there is a peak at about Point 54 

in the first frequency band, which should be caused by shrinking 

defects. However, Fig. 2 of integrated pile is flat at that point. 

Whichever the band shows, their distribution and symmetry are 

different. Variance represents the degree of dispersion. Skewness 

can describe the asymmetricity of data distribution. Kurtosis 
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measures sharp parts of a distribution. Apparently, the higher 

order moments are different, too. Therefore, the features have 

abilities to distinguish different types of piles and describe prop-

erties of original signals. Figure 6 shows the flow diagram of the 

pile  defect identification procedure. 

 

 

Fig. 2  Wavelet packet decomposition of integrated pile 

 

Fig. 3  Wavelet packet decomposition of shrinking pile 

 

Fig. 4  A integrated pile diagram 

 

Fig. 5  A shrinking pile diagram 

 

Fig. 6  Diagram of the pile defect identification 

3.1  The Sliding Window Method 

In the feature extraction stage, we applied Db7 wavelet, 

which has orthogonality and is compactly supported (Liu et al. 

2010). The pile reflected signals were decomposed to the third 

level, so that there were 8 independent frequency bands. If we 

only extract one feature vector in each frequency band, then the 

characteristics in time-domain will not be obtained. Apparently, 

it will waste valuable information provided by signals. To solve 

this problem, this study proposed the sliding window method.  

The sliding window can pass through the whole time-domain of 

signals, and it catches nuance in every time interval. This method 

can integrate information in both time and frequency domains, 

and it gives a more detailed description of pile reflected signals. 

This approach depends on the window width and step length. 

In general, the window width is neither too wide nor too narrow. 

A wide window will hold redundant information, while a narrow 

window may omit useful characteristics. In this paper, the sample 

data were obtained by the finite difference numerical simulation 

method. Each data had 1024 sampling points. After decomposi-

tion by wavelet packet, there were 139 sampling points in each 

band. It is proved through test that choosing 10 sampling points 

as the window width and 10 sampling points as the step length 

(the last window held less than 10 sampling points, then added 

zero for supplement) can achieve favorable effect. So that the 

window moved 14 steps. The formulation is shown as follows: 
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Here, H is a feature vector matrix. Each row of the matrix 

represents different frequency band. There were 8 bands in this 

study. Each column of the matrix covers the sampling points in 

different bands at the same time; m stands for the number of 

sampling points; n stands for the decomposition level. The   

diagram of sliding window is shown in Fig. 7. As it is shown 

below, the window crosses all the bands and is gradually sliding 

with time. When the window takes the last step, there will be 14 

feature vectors. 

3.2  Feature Dimension Reduction  

Compared with the conventional feature extraction method, 

the study obtained more features through the sliding window 

method. As is known to all, the dimension of the features vector 

is influential in the performance of the classification system  

(Simas Filho and Seixas 2016; Pal and Foody 2010; Kesharaju 

and Nagarajah 2015). On one hand, it can reveal more infor-

mation when the number of feature vectors increased. On the 

other hand, too many features will cause redundant data and the 

training time of classifier will extend. In order to reduce dimen-

sion of the features and eliminate the relevance among them, 

PCA was applied. The analyses are as follows.  

Assume that an m-dimensional input vector xi = (x1, x2, x3, 

, xn). Its sample dimension is n, mean is zero. (If the mean is 

not equal to 0, do the following calculation to make the mean 

equal to 0: ( )i i ix x E x   ) A linear transformation is expressed 

as： 

T
i iy U x   (9) 

where U represents an m  m orthogonal matrix. The ith column 

of U is the covariance matrix C of xi. 

1

1 n
T

i i
i

C x x
n 

    (10) 

Then the problem comes to solve the following eigenvalue 

problem: 

, 1, , .i i i iu C u i m    (11) 

where i is eigenvalue of covariance matrix, ui is the eigenvector. 

Then arrange the eigenvalues from the highest to lowest in order 

to obtain the corresponding principal component. 

, 1, , .T
i i iy u x i m    (12) 

3.3  Feature Extraction 

The procedures of higher order moment feature extraction 

are as follows. 

Step 1: Decompose pile signals 

The pile reflected signals were transformed by Db7 wavelet 

packet to the  third  level.  As a result,  each signal was processed 

into 8 independent frequency bands, we extracted features from 

the frequency bands of the third level.  

Step 2: Feature extraction 

We used the sliding window method to extract features. We 

chose 10 sampling points as the window width, and 10 sampling 

points as the step length (The last window held less than 10 sam-

pling points, then added zero for supplement). So that the win-

dow moved 14 steps, as shown in Fig. 7. Then, we calculated the 

higher order moments (the second central moment, the third cen-

tral moment, and the fourth central moment) of the 8 frequency 

bands contained in each window respectively. At last, each kind 

of higher order moment would have 14 features, the 

42-dimensional feature was obtained. 

 

 

Fig. 7  Diagram of sliding window 

A feature example of a shrinking pile is shown as follows. 

The vector F is consisted of 42 elements. The first 12 elements 

are the second central moment feature, the next 12 elements are 

the third central moment feature, and the last 12 elements are the 

fourth central moment feature. 

F = [1.0672, 1.3594, 0.0852, 0.2210, 6.6891e05, 0.0475,  

0.0018, 0.0452, 0.0702, 0.0201, 0.0265, 0.0033,  

0.0029, 0.0001, 2.497, 3.5944, 0.0564, 0.0370,  

0.0219, 0.0190, 0.0115, 0.0036, 0.0605,  

0.0136, 0.0084, 0.0011, 8.4308e-05, 0.0017,  

6.9896, 11.3521, 0.0446, 0.0254, 0.0126, 0.0104,  

0.0054, 0.0011, 0.0490, 0.0067, 0.0035, 0.0002,  

7.6219e-06, 0.0004]  (13)  

We plotted the feature in Fig. 8. Different kind of piles have 

different values of features, the following work of recognition 

and classification will be processed by SVM. 

10 Sampling points 

 
1.5 

1 
0.5 

0 

0.1 
0 

-0.1 

0.01 
0 

-0.01 

0 
-0.02 
-0.04 

6 
4 
2 
0 

0 
-1 
-2 

0 
-2 
-4 
-6 

6 
4 
2 
0 

A
m

p
li

tu
d

e 



Kang et al.: Pile Defect Identification Based on Multi-Higher Order Moment Feature    73 

 

 

Fig. 8  The higher order moment feature of shrinking pile 

For comparison, the proposed feature will be compared to 

conventional features including power spectrum density, variance 

and entropy. The feature extraction of power spectrum density, 

variance, and entropy are as follows. 

Step 1: Decompose pile signals 

The pile reflected signals were transformed by Db7 wavelet 

packet to the third level. Then extracted features from the 8  

independent frequency bands of the third level.  

Step 2: Feature extraction 

To obtain the power spectrum density feature, do Fourier 

transform of coefficients in each frequency bands respectively. In 

order to extract features by sliding window conveniently, set the 

points of Fourier transform to 140. Then calculated the the square 

of amplitude, the sum of the square of the real and imaginary 

parts. As a result, each signal sample had an 8  140 power  

spectral density matrix. The using of sliding window method was 

same as the higher order moment feature extraction. At last, there 

were 14 power spectral density features of each sample. 

To obtain the variance feature, the sliding window was set 

up as that in above feature extraction. Then, calculated the   

variance in each window. At last, there were 14 variance features 

of each sample. 

To obtain the entropy feature, the using of sliding window 

method was same as the above feature extraction. In Eq. (13), the 

sum of sampling points in each frequency band denotes Si, where 

N represents the number of frequency bands, Pi represents the 

ratios of sampling points in each frequency band to all the   

frequency bands. The entropy H is given by Eq. (14). There were 

14 entropy features of each sample. 

1

/
N

i i i
i

P S S

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1

ln
N

i i
i

H P P

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3.3  Classification 

We chose five kinds of pile samples for classification: Inte-

grated pile, shrinking pile, expanding pile, segregated pile and 

fractured pile. Each kind of piles had 60 sets of samples. A sim-

ulated integrated pile example is as Fig. 9(a). The pile length is L 

= 15 m, pile diameter is D = 0.8 m. The density of pile is 2400 

kg/m
3
, the longitudinal wave velocity is 3676 m/s, elastic modu-

lus of the pile is decided by Eq. (15). Shear modulus of soil 

around the pile-soil is 4.05  10
7
 Pa, density of soil around the 

pile-soil is 1800 kg/m
3
, shear modulus of soil at the bottom of a 

pile is 8  10
7
 Pa, density of soil at the bottom of a pile is   

2000 kg/m
3
, and Poisson’s ratio of soil around the pile-soil is 

0.28. The excited force is 1 Ns, and duration of it is 1  10
3

s. A 

simulated shrinking pile example is as Fig. 9(b). Its parameters 

are same as the integrated pile. However, there is a shrinking 

defect at 5 ~ 5.5 meters from the pile top, the diameter of defect 

is D2 = 0.6 m. A simulated expanding pile example is as Fig. 9(c). 

It is formed by the increasing of pile diameter. There is a ex-

panding defect at 5 ~ 5.5 meters from the pile top, the diameter 

of defect is D2 = 1 m. A simulated segregated pile example is as 

Fig. 9(d). The improper mix proportion of concrete makes the 

internal structure uneven. There is a segregated defect 5 ~ 5.5 

meters from the pile top. The wave velocity of segregated defect 

is 3400 m/s. A fractured pile example is as Fig. 9(e). There are 

crazes in the pile, which cause fractured defect. There was a 

fractured defect 5 ~ 5.5 meters from the pile top. 

The higher order moment features (the variance, skewness 

and kurtosis) were extracted. In the next stage, the features were 

fed into Support Vector Machine (SVM). Support Vector   

Machines are useful and have advantages in classification  

learning (Cristianini and Shawe-Taylor 2000; Vapnik 1998). For 

the purpose of classification, a linear or a non-linear separation 

surface which can divide the input samples should be obtained 

(Vishwanathan and Narasimha Murty 2002). The SVM can turn 

nonlinear problems to linear problems by increasing dimension, 

and then dealing with linear problems in the higher dimensional 

space (Kang and Zhao 2017). Besides, it proves advantages in the 

small statistical samples cases and nonlinear cases, so it is suita-

ble for this subject. The core idea of SVM is the minimization of  

structural risk (Morlet et al. 1982). The basic principles of SVM 

can be illustrated by the two dimension situation in Fig. 10. We 

have a set of example data samples, which are referred as feature 

vectors xi and corresponding labels yi, i = 1, , n, x  R
d
, yi  

{+1, 1}. Classification in SVM based approaches is founded on 

the notion of hyperplanes (Tan et al. 2014). Assume that H is the 

classification hyperplane. H1, H2 pass through the samples, 

which are closest to the optimal classification hyperplane. H1, 

H2 parallel to H, the distance between them is classification mar-

gin. The optimal hyperplane satisfies the classification require-

ments, and it makes the classification margin at its maximum, 

lets the samples away as far as possible. 

Suppose the optimal hyperplane is presented as follow:  

0w x b     (16) 

The set of example data samples should satisfy the follow-

ing formula: 

( ) 1iy w x b     (17) 

where w is weight vector, b is threshold value. The classification 

margin is 2/||w||
2
. In order to maximize it, the problem boils down 

to minimize ||w||
2
/2. According to the Lagrange multiplier, the 

problem comes to solve: 
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(a) Integrated pile diagram 

 

 

(b) Shrinking pile diagram 
 

(c) Expanding pile diagram

 

(d) Segregated pile diagram 

 

 

(e) Fractured pile diagram

Fig. 9  Simulated integrated pile examples

 

Fig. 10  SVM classifier-linear case 

 

( ) sgn( ) sgn( )i i i
i

f x w x b a y x x b      
 

(18) 

where ai is the Lagrange multiplier. However, in the actual  

situation, the models are often linear inseparable.  

Then, the SVM problem turns to solve the convex quadratic 

programming: 

 

1

1
min ( )

2

s.t. ( ) 1

n

i
i

i i i

w w C

y w x b



  
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

 (19)

 

where  is slack variable, it represents the deviation degree  

between actual conditions and ideal linear cases, C is the penalty 

coefficient, it represents the penalty degree to the misclassifica-

tion samples. 

In nonlinear cases, the problems can be transformed into 

high dimensional linear problems through a nonlinear transform. 

The new decision function is: 

1

( ) sgn ( , )
n

i i i
i

f x a y K x x b 



 
  

 
  (20) 

K(xi, xj) is a kernel function that satisfies the Mercer    

condition. As long as the kernel function is appropriate, the  

classification function can be found in a higher dimensional 

space. Due to the Support Vector Machine is completely    

described by training samples and the kernel function, it is   

important to choose the kernel function. At present, common 

kernel functions are the following: 

 The linear kernel K(xi, xj) = (xi  xj) 

 The polynomial kernel K(xi, xj) = ((xi  xj) + a)
b
 

 The sigmoid kernel K(xi, xj) = tanh((xi  xj) + a 

 The RBF kernel K(xi, xj) = exp((xi  xj)
2
) 

For the purposes of classification, we applied LIBSVM (Lin 

et al. 2005). It is a software package created by Chih-Jen Lin, 

that contains functions about pattern recognition and regression. 
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The operation is simple, and it is easy to use. Currently, it has 

been widely adopted by many international famous research in-

stitutions. The LIBSVM provides common kernel functions, the 

RBF kernel function was applied in this paper. 

Before inputting features to the classifier, the work of  

normalization was completed. The values of feature vectors were 

between 0 to 1. 300 samples including integrated pile, shrinking 

pile, expanding pile, fractured pile and segregated pile were got-

ten, each category had 60 data sets. We trained an SVM by half 

the input data sets, the rest of the samples were test sets. Finally, 

classification accuracy and the category labels were obtained. 

The classification categories are reported in Table 1. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

At first, for the purpose of comparison, higher order moment 

feature and conventional features including power spectrum  

density, variance, entropy were fed into SVM respectively. The 

experimental results are listed in Table 2. It is obvious that, the 

proposed feature gets a higher classification accuracy rates than 

the existing features. Furthermore, the accuracy of each kind of 

piles can be available. As the outputs of the SVM were predicted 

category labels, calculated the number of correct predicted labels 

in each kind of piles, and divided them by the input test sample 

number of each category. Then the accuracy of each kind of piles 

can be obtained. The “Average accuracy” is the average accuracy 

of five kinds of piles. Calculate the number of correct predicted 

labels in all kinds of piles, and divided them by the total number 

of input test sample data. 
We obtain an average of ≈ 13.33% average accuracy    

improvement, and the discrimination ability for each category 

has improved. Particularly, the proposed feature is a good   

candidate for discriminating integrated, segregated, and fractured 

types. Consequently, higher order moment feature is sensitive 

and has a good ability for pile defect recognition.  

In the above contribution, each sample was extracted 3 kinds 

of higher order moment features and each kind of feature had 14 

feature vectors. So that one sample had 42 feature vectors in all. 

The 42-dimensional feature is too complex for the classifier’s 

calculating. In view of this, to reduce the amount of input vectors, 

the 3 kinds of features were fused by PCA, and their dimension 

was reduced simultaneously. It can be observed from Fig. 11 that, 

the contribution rate of the first principal component is 42.4%, 

and the top ten principal components explained 98.8% of the 

total variance. In general, it can be argued that the principal 

components remain the original signal’s information if the   

cumulative contribution rate reaches 98%. Therefore, we    

extracted the top ten principal components as new fusion feature. 

They were defined as multi-higher order moment feature.

   As a comparison, the multi-higher order moment feature 

(MHF), single higher order moment feature (SHF), and the 

42-dimensional feature (42-D) were fed to SVM respectively. 

Their classification performances and the computational time are 

shown in Table 3. It can be noted that, the MHF achieves the 

highest efficiency. The results of classification can be plotted in 

Fig. 12. The ordinate represents different categories. They are 

quantized by labels, as shown in Table 1. The abscissa represents 

test sample sets, and each kind of piles has 30 test sample sets. 

 

 

Fig. 11  The score of principal components 

 

Fig. 12  Practical and predicted classification of test sample sets 

Table 1  SVM output variables 

Label 1 2 3 4 5 

Pile category Shrinking Expanding Integrated Segregated Fractured 

Table 2  Analysis results of higher order moment feature and existing features 

Feature category Power spectrum density Variance Entropy Higher order moment 

Pile category Number 
Accuracy of 

each category 
Number 

Accuracy of 

each category 
Number 

Accuracy of 

each category 
Number 

Accuracy of 

each category 

Shrinking 60 36.67% 60 10% 60 10% 60 83.33% 

Expanding 60 56.67% 60 63.33% 60 56.67% 60 56.67% 

Integrated 60 100% 60 76.67% 60 100% 60 100% 

Segregated 60 80% 60 100% 60 46.67% 60 100% 

Fractured 60 100% 60 23.33% 60 100% 60 100% 

Average accuracy 74.67% 54.67% 62.67% 88.00% 
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Table 3  Analysis results of MHF, SHF, and 42-D features 

Feature 

category 
MHF 

Single 

2nd-order 

feature 

Single 

3rd-order 

feature 

Single 

4th-order 

feature 

42-D 

feature 

Average 

Accuracy (%) 
98.00 90.67 87.30 78.67 88.00 

Computational 

Time (s) 
5.29 3.66 3.89 4.00 6.05 

 

 

As the blue circles suggests, they correspond to the different  

category labels in the ordinate which are practical classification 

of test sample sets. While the red stars are predicted test sample 

sets, for example, there is a misclassification sample which 

should be in label 1, but it is misclassified to label 3. Clearly, it is 

easily to see misclassification samples in Fig. 12, and we can find 

that the predicted classification of test sample sets is essentially 

in agreement with practical classification of test sample sets. 

As the combination of SHF, the advantages of MHF are  

obvious in discrimination, because the fusion feature is more 

complete and more comprehensive than the single one.     

Furthermore, compared with the most comprehensive 42-D  

feature, the classification accuracy increases by 10% as well as 

the training time reduces considerably.  

5.  CONCLUSIONS 

To sum up, a novel pile defect identification feature, the 

multi-higher order moment feature has been introduced. In order 

to process the pile reflected signals, the wavelet packet transform 

method was applied. Moreover, this paper presented the sliding 

window method which was able to integrate information in both 

time and frequency domains and extract more precise features. 

Then we extracted the higher order moment features (the    

variance, skewness and kurtosis) in each wavelet packet band. 

Comparison experiments have accomplished using the SVM. 

Simulation results show that the higher order moment feature has 

a higher classification accuracy than other existing features. After 

reducing dimension by PCA, the accuracy increased to 98%.  

We researched on extensions of the low strain integrity  

testing method including studies of the use of higher order  

moments in the classification process and overcame its    

shortcoming in low discrimination accuracy. In virtue of the low- 

cost, fast speed, and high accuracy advantages, the low strain 

integrity testing will be a more competitive method in pile quality 

detection. 
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APPENDIX 

A detailed example code about wavelet packet decomposi-

tion is as follows. 

clc; clear; 

data = load (‘signal.dat’); 

z = zeros (8,139); 

wpt1 = wpdec(data, 3, ‘db7’, ‘shannon’); 

a = wpcoef (wpt1, [3,0]); 

b = wpcoef (wpt1, [3,1]); 

c = wpcoef (wpt1, [3,2]); 

d = wpcoef (wpt1, [3,3]); 

e = wpcoef (wpt1, [3,4]); 

f = wpcoef (wpt1, [3,5]); 

g = wpcoef (wpt1, [3,6]); 

h = wpcoef (wpt1, [3,7]); 

z(1,:) = a; 

z(2,:) = b; 

z(3,:) = c; 

z(4,:) = d; 

z(5,:) = e; 

z(6,:) = f; 

z(7,:) = g; 

z(8,:) = h; 

z; 
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