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ABSTRACT 

The presence of cemented soils pose significant challenges in drilled shaft design and may prevent accurate estimates of the 
service limit state if traditional analytical techniques are employed. Thus, an Artificial Neural Network (ANN) is developed and 
tested as an alternative method for predicting settlement induced by axial loads. Training is carried out using the results of 31 
field load tests performed in Las Vegas, USA, where cemented soils are common, and an automated process is employed to 
determine the optimal network architecture. Ultimately, a cascaded feed-forward ANN with one hidden layer consisting of six 
artificial neurons produced the highest quality generalization. Ten additional load tests not included in the original training, 
testing, or validation datasets are reserved to evaluate performance. It is observed that the ANN produces similarly accurate 
estimates of load-settlement on average as compared to two more traditional t-z style approaches. 
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1.  INTRODUCTION 

Cemented soils are often found in arid to semi-arid regions 
around the world and present noteworthy challenges regarding 
the design of cast-in-place deep foundations. These are typically 
referred to as drilled shafts or cast-in-drilled-hole piles (CIDH) in 
the United States whereas bored piles is a more common name in 
Europe. The colloquial term caliche is often used in parts of the 
United States such as Southern Nevada and Arizona to describe 
cemented sandy material that can be so strong that the presence 
of just one shaft width thick layer may reduce settlement of an 
axially loaded drilled shaft by as much as 50% (Stone 2009). 
Despite the heavy influence of cemented materials on axial re-
sponse, they are difficult to characterize using common Geotech-
nical Investigation (GI) techniques (e.g., drilling and sampling) 
and, as a result, foundation engineers are often forced to accept 
high levels of uncertainty in predictions of the service limit state. 
Hence, the goal of this paper is to investigate if an Artificial 
Neural Network (ANN) trained with commonly available design 
information can improve upon traditional settlement analyses for 
axially loaded drilled shafts in cemented soils. 

An ANN is a versatile nonlinear function approximation tool 
based on the biological brain. The technology is quickly gaining 
attention in engineering disciplines because of its ability to iden-
tify complex relationships between many different inputs and 
outputs, even when the contact nature between parameters is 
entirely unknown (Garrett 1994). This makes an ANN very well 
suited to map one multivariate space to another given noisy or 

incomplete datasets, which are common in geotechnical engi-
neering. In general, topics for which ANN technology has been 
applied within the field of geotechnical engineering include, but 
are not limited to: Constitutive modeling (Ellis et al. 1995; Millar 
et al. 1995; Zhu et al. 1998; Penumadu and Zhao 1999; Sidarta 
and Ghaboussi 1998); estimation of geomaterial properties (Ellis 
et al. 1995; Najjar et al. 1996; Ozer et al. 2008; Park et al. 2009; 
Park and Kim 2011); slope stability (Ni et al. 1996; Neaupane and 
Achet 2004; Zhao 2008; Cho 2009); liquefaction (Ali and Najjar 
1998; Goh 2002; Javadi et al. 2006); shallow foundations (Si-
vakugan et al. 1998; Provenzano et al. 2004; Shahin et al. 2005; Pad-
mini et al. 2008); and deep foundations (Nawari et al. 1999; Teh et 
al. 1997; Kiefa 1998; Chan et al. 1995; Goh 1996; Das and 
Basudhar 2006; Park and Cho 2010).  

Regarding ANN usage for deep foundations, most research ei-
ther focuses on the prediction of nominal capacity directly or the 
complete load-settlement behavior of foundation elements. The 
latter, which is the topic of this study, is mainly limited to studies 
involving driven piles. One noteworthy example of this comes from 
Nejad et al. (2009). They employed approximately 100 sets of pile 
driving data to train an ANN to predict driven pile settlement given 
axial load and concluded that the ANN was capable of providing more 
accurate predictions than the other approaches considered, the t-z 
method and three closed form solutions from Das (1995, Poulos 
and Davis (1980) and Vesic (1977). Another pertinent study, Mo- 
meni et al. (2015), used a feed forward ANN trained with back- 
propagation to estimate side and tip resistances of concrete piles 
given 36 sets of Pile Driving Analyzer (PDA) data, pile geometry 
characteristics, and Standard Penetration Test (SPT) blow counts. In 
this case, it was found that the ANN was able to produce accurate es-
timates of skin friction, end-bearing, and ultimate resistance for new 
test cases associated with similar soil conditions. 

In this study, an automated process is carried out to deter-
mine the ideal network architecture for predicting the load-   
settlement response of axially loaded drilled shafts. To address the 
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specific issue of cemented soils, training data is taken from the Las 
Vegas Valley, where caliche is prevalent. The finalized ANN is 
selected through a semi-automated selection process based on per-
formance metrics of many candidate networks. Prediction quality is 
evaluated by employing the ANN to predict the response of 10 test 
shafts which were not included in the original training dataset and the 
results are compared to those obtained with two different t t-z style 
analyses. 

2.  LOAD TEST AND GI DATA 

The load test and GI data required to train and evaluate the 
ANN is taken from the Nevada Deep Foundation Load Test 
Database (NDFLTD) (Motamed et al. 2016), which currently 
represents the largest collection of field load test data from Las 
Vegas, Nevada. It includes 41 load tests and associated GI in-
formation. In the 31 load tests that make up the training dataset 
for this study, shaft diameters (D) range from 0.61 to 2.44 m with 
embedded lengths (L) from 9.63 to 39.01 m. Figure 1 shows the 
approximate locations of the test shafts. 

All but one of the load tests utilized a bi-directional load cell 
to induce movement. For these cases, the equivalent top-down 
curves are estimated following the methods described in Lee and 
Park (2008). Essentially, this involves summing the vertical loads 
associated with equal upward and downward movements measured 
during the test. Then, the theoretical elastic compression that 
would have been observed in a top-down test in the section of the 
shaft above the load cell is accounted for by considering the pattern 
of developed side shear and the stiffness characteristics of the con-
structed shaft. 

In general, the available GI data for the test shafts in this study 
is very limited. Since the information which can be considered by 
the ANN must be available for all of the training data points, this 
means that the inputs must be kept relatively simple. In addition, 
the lack of site-specific laboratory test data limits the potential for 
existing t-z style analyses to produce accurate results in many cas-
es. It is also difficult to obtain high quality load test data in Las 
Vegas with a bi-directional load test since the stiff soils tend to 
severely limit the movement induced either above or below the 
load cell. Thus, to gain insight regarding the impact of data quality, 
a scoring system proposed by Motamed et al. (2016) is employed to 
quantify the quality of each load test and associated GI. In general, 
higher GI scores are given for more thorough boring logs and 
available quantitative data (i.e., from laboratory and/or field 
measurements). Particularly, the availability of a complete SPT 
profile and useful laboratory test data is ideal. For the load tests, 
scores are mainly awarded based on how close the test comes to 
achieving geotechnical failure. Failure is defined as the onset of 
plunging (movement with no additional load) or a shaft head dis-
placement equal to 5% of D, whichever comes first. The distribu-
tion of data scores is shown in Fig. 2 and the scoring criteria is 
presented in Table 1. 

The 10 load test data points employed for evaluation are cho-
sen such that the predictor variables fall within the ranges en-
compassed by the training dataset. For example, the shaft di-
ameters among the evaluation dataset are all greater than 0.61 m 
(the min of the training dataset) and less than 2.44 m (the max of 
the training dataset). A summary of the training and evaluation test 
shafts (hereafter referred to as ETSn, where n  is the unique identi-
fication), are given in Tables 2 and 3, respectively. Also, the GI 

 

Fig. 1 Approximate locations of the test shafts included in the 
study 

 

 
Fig. 2 Load test and GI quality scores for the data included in 

this study 

data for each of the evaluation test shafts is given in Tables 4 
through 13. For brevity, detailed GI information for the training 
dataset is not included herein but is available upon request. The dis-
tribution of shaft diameters, embedded lengths, and relative materi-
al fractions along the embedded shaft lengths included in the 
training dataset are illustrated in Fig. 3. 
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Table 1  Scoring criteria for load test and GI data quality 

Score 
Scoring criteria 

Load test data Geotechnical investigation data 

1 
(worst) 

Extrapolation  2% of the shaft diameter is required for both compo-
nents of bidirectional movement or  3% is required for a top-down 
test. 

Incomplete boring logs with little to no SPT data or proper visual- 
manual classifications. No lab data. 

2 
Extrapolation  2% of the shaft diameter is required for one compo-
nent of bi-directional movement (second component may require 
2%) or 2.5% but  3% is required for a top-down test. 

Boring logs with minimal SPT data (i.e., missing for some geologic 
units) and useful visual- manual classifications. No lab data. 

3 
Extrapolation  2% of the shaft diameter is required for both compo-
nents of bi-directional movement or > 2% but  2.5% is required for 
a top-down test. 

Boring logs are complete with SPT data, visual-manual classifica-
and possibly torvane or pocket pen data. Limited lab data and/or ad-
ditional in situ data is available. 

4 
(best) 

Either no extrapolation is needed or extrapolation  2% of the shaft 
diameter is required for only one component of load-cell movement 
or in total for a top-down test. 

Complete boring logs with detailed material classifications, SPT data 
and possibly other data such as CPT or shear wave velocity meas-
urements. Thorough lab data covering soil strengths is available. 

Note: If a test shaft is not fully instrumented, the load test data score is reduced by 1. For every 45 m a borehole is spaced from the test shaft, or if the distance 
is unknown, the GI data score is reduced by 1. If quality control is lacking or significant problems/irregularities are present in the constructed shaft, the load 
test data score is reduced by 2. 

Table 2  Summary of test shaft data employed for training the ANN 

No. 
Data score 

Tip material
L 

(m) 

D 

(m) 

Relative fraction (%) 

Load test GI Mean Caliche Cohesionless Cohesive 

1 2 2 2 Sand 12.2 1.5 0.00 15.01 84.99 

2 4 4 4 Sand 22.7 2.3 0.00 100.00 0.00 

3 1 4 2.5 Sand 9.8 2.4 23.44 50.00 26.56 

4 3 4 3.5 Clay 9.6 0.6 11.71 33.23 55.06 

5 3 4 3.5 Clay 25.1 0.6 12.24 13.33 74.42 

6 1 2 1.5 Sand 13.1 0.6 3.49 68.60 27.91 

7 1 4 2.5 Caliche 32.3 1.2 35.38 26.42 38.21 

8 1 2 1.5 Caliche 32.0 1.2 57.14 19.52 23.33 

9 2 2 2 Clay 35.6 1.2 5.14 28.94 65.92 

10 2 2 2 Clay 34.3 1.2 8.00 8.44 83.56 

11 2 2 2 Clay 37.3 1.2 13.47 19.59 66.94 

12 2 3 2.5 Clay 31.1 0.9 7.35 40.20 52.45 

13 1 3 2 Clay 30.5 1.2 5.50 44.00 50.50 

14 1 4 2.5 Clay 30.8 1.2 8.91 35.64 55.45 

15 1 4 2.5 Clay 37.2 1.8 6.15 55.33 38.52 

16 3 4 3.5 Clay 37.1 1.2 10.39 15.41 74.20 

17 2 2 2 Clay 27.6 1.1 22.60 49.61 22.78 

18 1 3 2 Caliche 32.2 1.1 32.70 34.60 32.70 

19 1 3 2 Sand 39.0 1.2 20.90 36.52 42.58 

20 1 2 1.5 Caliche 34.1 1.2 20.04 38.34 41.61 

21 2 2 2 Clay 25.0 1.2 4.88 0.00 95.12 

22 1 4 2.5 Clay 27.6 1.2 2.76 17.13 80.11 

23 4 4 4 Clay 29.1 1.5 5.24 23.87 70.89 

24 4 3 3.5 Clay 18.9 1.2 18.55 20.16 61.29 

25 1 3 2 Sand 30.9 1.2 4.48 36.72 58.81 

26 1 3 2 Clay 34.4 1.8 3.99 34.69 61.31 

27 2 2 2 Caliche 31.8 1.1 13.42 26.20 60.39 

28 4 4 4 Sand 22.9 1.1 13.33 62.00 24.67 

29 4 1 2.5 Clay 34.1 1.1 8.04 11.16 80.80 

30 1 3 2 Clay 32.4 1.2 4.24 36.16 59.60 

31 4 4 4 Caliche 25.6 1.2 0.60 17.26 82.14 
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Table 3  Summary of evaluation test shaft data 

ETSn 
Data score Tip 

material 
L 

(m) 
D 

(m) 
Relative fraction (%) 

Load test GI Mean Caliche Cohesionless Cohesive 

1 2 2 2 Sand 31.4 1.2 12.6 55.8 31.6 

2 2 3 2.5 Caliche 37.5 1.2 12.2 39.8 48.0 

3 2 2 2 Sand 37.1 1.2 9.4 48.2 42.4 

4 1 3 2 Sand 30.5 1.1 47.5 10.5 42.0 

5 4 3 3.5 Clay 29.3 1.5 5.2 23.8 71.0 

6 4 3 3.5 Clay 21.3 1.1 6.4 38.6 55.0 

7 2 2 2 Caliche 21.3 1.1 27.9 12.8 59.4 

8 2 3 2.5 Caliche 32.2 1.1 29.9 37.4 32.7 

9 2 2 2 Sand 30.8 1.5 0.0 97.5 2.5 

10 4 4 4 Caliche 25.3 0.9 0.6 16.3 83.1 

Table 4  Idealized stratigraphy and material properties for ETS1 (water table depth  25.8 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 

1.2 Cohesionless (SM) 15.4 43 25 
2.4 Cohesive 17.4  19 143 

3.5 Cohesionless (GP) 17.3 43 39 
4.1 Cohesive 17.4  45 261 

5.0 Caliche 22.0 40  
5.5 Cohesive 17.4  45 245 

6.7 Caliche 22.0 40  
8.2 Cohesionless (SM) 15.9 40 21 
9.1 Cohesionless (SM) 18.4 44 50 

11.1 Caliche 22.0 40  
12.8 Cohesive 18.7  6 34 

17.4 Cohesionless (SM) 17.9 38 15 
18.3 Cohesive 20.6  50 230 

18.9 Caliche 22.0 40  
19.7 Cohesionless (SM) 18.7 41 30 
19.8 Cohesive 20.6  24 107 

20.7 Cohesionless (SM) 18.7 41 30 
21.2 Caliche 22.0 40  
25.8 Cohesive 20.5  19 78 

26.2 Cohesive 20.6  40 158 

27.4 Cohesionless (SM) 17.0 36 11 
29.6 Cohesive 20.2  20 77 

30.6 Cohesionless (SM) 16.6 36 10 
37.2 Cohesionless (SM) 18.2 39 25 

 

           

Fig. 3  Distribution of select predictor variables in the training dataset 
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Table 5  Idealized stratigraphy and material properties for ETS2 (water table depth  5.6 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
0.5 Cohesionless (SP) 18.4 43 25 
2.4 Cohesive 17.4  50 448 
3.7 Cohesionless (SP) 17.1 40 21 
4.1 Cohesive 17.4  40 237 
4.6 Cohesionless (GP) 17.6 43 40 
5.6 Cohesionless (SM) 22.0 44 50 
6.1 Cohesive 20.6  40 239 
7.9 Cohesionless (SM) 21.2 44 44 

10.1 Cohesive 20.6  31 212 
11.7 Cohesionless (GP) 22.0 44 50 
11.9 Cohesive 20.6  40 253 
12.3 Cohesionless (GP) 22.0 44 50 
12.6 Caliche 22.0 40  
13.1 Cohesionless (GP) 20.3 43 40 
13.7 Caliche 22.0 40  
14.6 Cohesionless (SM) 21.7 44 50 
14.9 Cohesive 20.6  35 201 
16.6 Cohesionless (SM) 19.8 42 37 
18.1 Cohesive 20.5  24 130 
18.6 Caliche 22.0 40  
19.2 Cohesive 20.6  30 156 
19.5 Cohesionless (SM) 19.8 42 40 
20.1 Cohesive 20.6  45 230 
24.2 Cohesionless (SM) 20.4 43 50 
26.5 Cohesive 20.5  38 179 
27.3 Cohesionless (SM) 18.9 41 33 
29.7 Cohesive 20.6  31 134 
30.0 Cohesionless (GP) 19.2 42 40 
30.5 Cohesive 20.6  23 98 
31.4 Caliche 22.0 40  
33.5 Cohesive 20.6  50 204 
34.6 Cohesionless (SM) 19.2 42 43 
35.7 Cohesive 20.3  18 72 
36.1 Cohesionless (GP) 18.2 39 25 
36.6 Cohesive 20.4  30 118 
38.1 Caliche 22.0 40  
40.5 Cohesive 20.6  49 188 
41.3 Caliche 22.0 40  

Table 6  Idealized stratigraphy and material properties for ETS3 (water table depth  4.6 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 

16.5 Cohesionless (SP) 22.0 45 50 
17.2 Caliche 22.0 40  
18.3 Cohesive 20.6  48 264 

20.4 Cohesionless (SM) 19.0 41 30 
20.8 Caliche 22.0 40  
21.9 Cohesive 18.9  7 36 

22.3 Cohesionless (SM) 18.5 40 25 
23.2 Cohesive 19.3  10 50 

23.8 Cohesionless (SM) 19.5 42 39 
28.0 Cohesive 20.6  30 142 

28.4 Caliche 22.0 40  
29.6 Cohesive 20.6  21 94 

30.3 Cohesionless (SM) 17.8 38 15 
30.5 Caliche 22.0 40  
31.9 Cohesive 20.6  20 86 

32.2 Cohesionless (SM) 18.2 39 21 
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Table 6  (Continued)

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 

32.7 Caliche 22.0 40  
34.9 Cohesive 19.6  15 63 

35.2 Cohesionless (SM) 16.5 35 9 
36.0 Caliche 22.0 40  
37.2 Cohesive 22.0  45 179 

37.5 Cohesionless (SM) 19.6 42 50 
38.2 Caliche 22.0 40  
39.1 Cohesive 20.6  45 176 

40.2 Cohesive 19.0  10 38 

41.8 Cohesionless (SM) 19.5 42 50 
53.6 Cohesionless (SM) 15.7 34 8 

Table 7  Idealized stratigraphy and material properties for ETS4 (water table depth  7.3 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 

3.0 Cohesionless (SM) 21.7 30 25 
5.5 Cohesive 19.2  39 223 

7.0 Cohesionless (SP) 21.7 44 50 
12.6 Caliche 22.0 40  
14.6 Cohesive 17.8 29 29 156 
14.9 Caliche 22.0 40  
15.2 Cohesive 20.6  20 104 

16.6 Caliche 22.0 40  
20.0 Cohesive 20.6  40 196 

20.7 Cohesionless (SM) 20.3 37 13 
23.5 Caliche 22.0 40  
24.8 Cohesive 19.2  12 52 

25.8 Caliche 22.0 40  
26.1 Cohesive 20.6  50 213 

27.7 Caliche 22.0 40  
30.3 Cohesive 20.4  50 203 

30.6 Caliche 22.0 40  
31.1 Cohesive 19.8  15 59 

32.6 Caliche 22.0 40  
33.5 Cohesionless (SM) 20.1 37 16 

Table 8  Idealized stratigraphy and material properties for ETS5 (water table depth  24.7 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
4.3 Cohesive 17.4  28 219 
5.1 Cohesionless (SM) 17.1 43 36 
5.8 Cohesionless (GP) 18.7 44 50 
6.6 Cohesionless (SM) 22.0 44 50 
7.3 Cohesionless (GP) 20.3 44 49 
7.5 Cohesive 17.4  50 314 
7.9 Cohesionless (SM) 16.7 42 32 
8.4 Cohesive 17.4  35 210 
9.1 Cohesionless (SM) 18.2 44 50 

11.9 Cohesive 17.4  39 228 
12.3 Cohesionless (GP) 16.3 42 31 
13.3 Cohesive 17.4  48 254 
14.6 Cohesive 17.4  35 179 
15.1 Cohesionless (GP) 16.0 41 31 
15.5 Cohesive 17.4  44 215 
16.0 Cohesionless (GP) 15.6 39 20 
17.4 Cohesionless (GP) 17.1 43 49 
18.9 Caliche 22.0 40  
30.5 Cohesive 20.5  40 161 
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Table 9  Idealized stratigraphy and material properties for ETS6 (water table depth  6.1 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
0.6 Cohesionless (SP) 21.4 44 35 
1.8 Cohesionless (SM) 22.0 45 50 
3.7 Cohesionless (SP) 20.0 44 50 
6.1 Cohesionless (SM) 18.2 44 50 
7.6 Cohesionless (SM) 22.0 44 50 
8.4 Cohesive 20.6  35 212 
9.1 Cohesionless (SP) 22.0 44 50 

11.9 Cohesionless (SM) 21.2 39 50 
13.7 Cohesive 20.6  33 189 
15.1 Caliche 20.4 40  
23.3 Cohesive 20.6  36 175 
23.5 Cohesionless (SP) 21.7 43 50 
24.4 Cohesive 20.6  45 204 

Table 10  Idealized stratigraphy and material properties for ETS7 (water table depth  6.4 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
1.1 Cohesionless (SP) 23.9 45 50 
2.6 Cohesionless (SM) 16.5 42 25 
3.4 Caliche 22.0 40  
4.0 Cohesive 17.4  25 135 
5.8 Cohesionless (SM) 21.5 43 41 
6.4 Caliche 22.0 40  

10.7 Cohesive 19.6  36 224 
12.2 Cohesionless (SM) 18.4 42 28 
12.6 Caliche 22.0 40  
18.6 Cohesive 20.0  46 253 
20.3 Caliche 22.0 40  
25.8 Cohesive 20.6  50 236 
26.2 Cohesionless (SM) 18.2 38 16 
27.4 Cohesive 20.6  25 110 
27.7 Cohesionless (SM) 19.6 42 40 
29.6 Caliche 22.0 40  
30.0 Cohesive 20.6  45 189 
30.8 Caliche 22.0 40  
31.4 Cohesive 20.6  45 185 
32.0 Caliche 22.0 40  

Table 11  Idealized stratigraphy and material properties for ETS8 (water table depth  5.3 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
1.5 Cohesionless (SM) 20.7 12 19 
3.8 Cohesive 20.1  10 59 
5.8 Cohesionless (SM) 21.2 43 41 
7.0 Cohesionless (SP) 22.0 44 50 
9.1 Caliche 22.0 40  

10.2 Cohesionless (SM) 23.2 44 50 
11.6 Caliche 22.0 40  
13.0 Cohesive 20.6  42 250 
14.5 Cohesionless (SM) 21.4 39 14 
16.0 Cohesionless (GP) 18.5 41 24 
17.1 Cohesionless (SM) 22.9 43 50 
18.0 Caliche 22.0 40  
22.1 Cohesive 19.8  12 60 
23.2 Cohesionless (SM) 20.6 38 50 
23.6 Caliche 22.0 40  
26.2 Cohesionless (SM) 18.7 41 30 
26.5 Caliche 22.0 40  
28.7 Cohesive 17.9  31 135 
29.1 Caliche 22.0 40  
30.2 Cohesive 20.6  40 169 
30.8 Caliche 22.0 40  
31.9 Cohesive 20.6  40 165 
35.2 Caliche 22.0 40  
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Table 12  Idealized stratigraphy and material properties for ETS9 (water table depth  5.6 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
0.5 Cohesionless (GP) 19.9 44 35 
0.9 Cohesionless (SM) 18.7 41 17 
1.5 Cohesive 17.4  50 451 
2.0 Caliche 22.0 40  
3.8 Cohesive 17.4  29 179 
7.9 Cohesionless (SM) 20.2 43 37 
8.7 Cohesionless (SP) 22.0 44 50 

10.7 Cohesionless (SM) 18.9 44 50 
11.1 Cohesionless (SP) 22.0 44 50 
12.2 Cohesionless (SM) 19.8 42 33 
13.0 Cohesive 20.6  33 206 
15.8 Cohesionless (SM) 21.2 44 48 
17.7 Cohesionless (SM) 19.2 41 30 
35.4 Cohesionless (SM) 19.3 42 40 

Table 13  Idealized stratigraphy and material properties for ETS10 (water table depth  4.9 m) 

Base layer depth (m) Soil type  (kN/m3)  (deg) NSPT su (kPa) 
4.9 Cohesive 19.5  18 95 

10.1 Cohesive 18.0  11 58 
14.9 Cohesive 18.8  36 192 
16.8 Cohesionless (SM) 19.5 42 30 
18.3 Cohesionless (GP) 21.7 44 50 
20.7 Cohesive 19.8  19 117 
24.4 Cohesive 20.1  40 83 
25.1 Cohesionless (GP) 19.8 43 50 
25.3 Caliche 22.0 40  

 
3.  ANN ARCHITECTURE AND TRAINING 

The types of problems an ANN is best suited to handle are 
dictated by the training data and architecture employed. The ideal 
network architecture and content/format of the training data are 
also interdependent, making it difficult to determine the optimal 
setup for an ANN. For this study, various organizations of training 
data were tested by optimizing feed-forward and cascaded feed- 
forward Multi-Layer Perceptron (MLP) architectures in an auto-
mated fashion as described hereafter. 

In total, 31 data points are used for training and an addition-
al 10 are reserved for evaluations through blind predictions. The 
prescribed outcomes for each input sample consist of the meas-
ured downward movement associated with a given value of top 
load applied to the shaft head. Therefore, many input samples of 
top load are required to properly capture the load-settlement re-
sponse for each set of load test data. The tipping materials are 
interpreted by the computer as follows: 1 = sand, 2 = clay, 3 = 
caliche. It should be noted that there was insufficient data regard-
ing shafts tipped into Partially Cemented Material (PCM) to properly 
train the ANN to deal with such cases. Additionally, the relative 
fraction of PCM is defined independently of the values entered for 
the associated parent materials. For example, if partially ce-
mented clay was noted in a boring log, then the relative fraction 
entered for cohesive material would include the partially cemented 
clay as well. Hence, the sum of the relative fractions for cohesive, 
cohesionless, and caliche always equate to 100% whether or not 
any partial cementation was evident. 

Standard Penetration Test (SPT) data is the only form of in-situ 
test data that is available for all of the data in the NDFLTD and is 
therefore employed to help characterize the soil profile Prelimi-

nary experiments in which raw SPT blow counts (NSPT), counts 
corrected for hammer efficiency (N60), and counts further corrected 
for overburden pressure (N160

) revealed that using N160
 produced 

poorer generalization compared to using NSPT or N60 with the 
water table defined separately. Hence, in contrast with recom-
mendations from Nejad et al. (2009) that the depth of the water 
table is best captured by N160 , NSPT is used herein to characterize the 

subsurface along with the other aforementioned parameters. This is 
accomplished by dividing the embedded shaft length into 20 
parts (i.e., increments of 5%) and presenting the network with the 
mean NSPT measured over each. The final input structure for the 
ANN is shown in Table 14. 

Presently, the most common training mechanism for feed- 
forward ANNs is back-propagation and the traditional implemen-
tation of back-propagation uses what is known as a gradient de-
scent algorithm to adjust the weights during training (Rumelhart et 
al. 1988). However, this method of optimization tends to converge 
slowly and is prone to incorrectly converging on local minima 
(Lahmiri 2011). Thus, the task of adjusting weights and thresholds 
during back-propagation in this study is carried out with the Le-
venberg-Marquardt algorithm (Marquardt 1963; Levenberg 1944). 
This approach has been shown to improve generalization in most 
cases and typically takes less time to run than other similar algo-
rithms such as Bayesian regularization (Jeffreys 1939). The update 
rule of the Levenberg-Marquardt algorithm is described by Eq. (1) 

1
1 ( )T

k k k K k kW W J J I J e
      (1) 

where kW  is the current weight, 1kW   is the next weight, J is 
the Jacobian matrix,  is a positive value known as the combina-
tion coefficient, I is the identity matrix, and e is the error vector. 



Stanton and Motamed: Estimation of Axially Loaded Drilled Shaft Settlement in Cemented Soil Conditions with an Artificial Neural Network    53 

 

Table 14 Structure of training/input data used for the ANN in 
this study 

Inputs Output

Top 
load 
(kN) 

Shaft 
top 
(m) 

La 

(m) 

Cohesionless 
frac. 
(%) 

Cohesive 
frac. 
(%) 

Caliche 
frac. 
(%) 

PCMb 
frac. 
(%) 

Water 
table 
(m) 

Tip 
mat. 

Dc

(m)

NSPT
d

per
5%
of L

Disp. 
(cm)

a Embedded shaft length 

b Partially cemented material 

c Shaft diameter 

d Consists of 20 individual inputs (i.e., average over 0 ~ 5%, 5 ~ 10%, 10 ~ 15%, 

15 ~ 20%, etc.) 

 
 

Training is performed using the “cascadeforwardnet” and 
“feedforwardnet” functions in Matlab (Matlab 2014) for cascaded 
and traditional architectures, respectively. These require the 
input-target pairs to be sorted into three categories: Training, 
validation, and testing. Training data is presented to the network 
during training so that adjustments can be made to minimize error. 
Validation data is used to measure network generalization and stop 
the training process when generalization stops improving (i.e., 
these points directly affect training). Testing points, on the other 
hand, have no effect on training so as to provide an independent 
measure of performance after training is complete. That being 
said, for this study, the load-settlement pairs in the initial testing 
dataset all conform to the same general trends that the network 
sees during training. It is therefore necessary to perform a more 
rigorous evaluation of the ANN by comparing to entirely new and 
complete load-settlement datasets. Thus, the metrics associated with 
the testing dataset are only considered to aid in the selection of the 
finalized ANN in this research. The following steps outline the 
development, training, and selection of the finalized ANN: 

 1. Collect input data and organize into an array where each row 
contains the elements shown in Table 14. 

 2. Interpret measured load test data to define a column vector of 
target displacements associated with each prescribed value of 
top-load. 

 3. Systematically train multiple candidate networks, each with 
a different number of hidden layers and neurons. This is 
performed for both feed-forward and cascaded feed-forward 
architectures considering all possible permutations of tan-
gent sigmoid, logarithmic sigmoid, and linear activation 
functions applied to the hidden and output layers. 

 70% of samples are used for training, 15% for validation, 
and 15% for testing (ratios determined through trial and er-
ror). 

 Assign data to each category with the interlaced division 
function in Mat-lab (divint) to ensure that all magnitudes 
of load and settlement are equally represented. 

 Training is carried out with the Levenberg-Marquardt algo-
rithm. 

 The linear, logarithmic sigmoid, and tangent sigmoid activa-
tion functions are described by Eqs. (2) ~ (4), respectively. 
These are also illustrated in Fig. 4. 

( )f u u    (2) 

1
( ) , 0 ( ) 1

1 u
f u f u

e
  


 (3) 

 
(a) Linear                    (b) Sigmoid 

 

 
(c) Tangent sigmoid 

Fig. 4  Activation functions used in artificial neurons 

2
( ) 1 , 1 ( ) 1

1 u
f u f u

e
    


 (4) 

 4. Determine the optimal architecture by programmatically 
filtering out trained ANNs based on performance indicated 
by the correlation coefficient and Mean Squared Error 
(MSE) between the predicted and target outcomes. 
 Qualitative inspections are performed for the top ten out 

of 1  107 trained networks for to ensure that physically 
reasonable predictions are obtained in as many cases as 
possible. 

The finalized ANN employs cascaded feed-forward archi-
tecture with a single hidden layer consisting of 6 neurons, though 
the optimal number of neurons in the hidden layer would have 
been  31 if cascaded architecture was not used. The greater 
number of connections in the cascaded networks, however, ena-
bles smaller hidden layers to produce the best generalizations for 
the data in this study. It is important to note that the optimal num-
ber of hidden layers is found to be one regardless of other archi-
tectural characteristics. This supports the findings from Hornik  
et al. (1989) which suggest that any continuous function can be 
approximated with a single layer, feed-forward ANN. 

Figure 5 portrays the finalized ANN architecture. In this 
cascaded framework, there is a connection between the inputs and 
all subsequent weights (w) and biases (b). While a tangent sig-
moid activation function is selected for the hidden layer, a logarith-
mic sigmoid is employed in the output layer to avoid prediction of 
negative settlement values. This works for any combination of in-
puts because the result of the logarithmic sigmoid function always 
ranges between 0 and 1 (as opposed to 1 and 1 for linear or 
tangent sigmoid). A more complex alternative to this approach 
might involve the application non-classical logic (i.e., fuzzy logic) 
(Zadeh 1965) to create what is known as a neuro-fuzzy inference 
system. In theory, such a system could lead to improved gener-
alization but in order to quantify any potential benefits, it is nec-
essary to first understand how the network performs using purely 
classical logic. Hence, the decision to use a logarithmic sigmoid 
activation function in the output layer is advantageous because it 
enables physically reasonable predictions within the framework of a 
classical ANN. 

f (u)
f (u)

f (u) 

u

u

u 

1 

1 

 

 

1 
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Fig. 5  Finalized ANN architecture 

A histogram of the error for all instances of training, testing, 
and validation is shown in Fig. 6. In general, this describes how 
well the trained ANN predicts target values based on inputs in-
cluded in the original training dataset. The lack of instances with 
large errors indicates that the ANN would produce reasonably 
accurate results if presented with any of the original inputs. 

 

Performance regressions for training, testing, and validation 
are given in Fig. 7. These plots suggest that the ANN achieves 
strong generalization among the 31 load tests in the training dataset, 
although they do not give any information pertinent to how the 
network might perform if presented with entirely new data. 

The progression of validation performance, quantified by the 
MSE, is shown in Fig. 8. 

This reveals that optimum performance was reached at epoch 
65 with an MSE of 0.033755. 

4. TRADITIONAL ANALYTICAL 
TECHNIQUES 

In order to benchmark the ANN, t-z style analyses are carried 
out using the programs SHAFT (Reese et al. 2012) and CGI- 
DFSAP (Norris 1986; Ashour et al. 1998) to estimate the load- 
settlement response of the evaluation test shafts described in Table 3. 

Since drilled shafts in Las Vegas soil conditions often derive a 
significant portion of their resistance from both skin friction and 
end bearing, the analyses carried out in SHAFT and CGI- 
DFSAP attempt to capture the contribution of both. The load 
transfer curves in SHAFT for frictional and tip resistance are 
based on the results of field load tests conducted on drilled shafts 
with diameters ranging from 0.6 to 0.9 m (Reese and O’Neill 1988) 
while those in CGI-DFSAP are based on the work of Ashour and 
Helal (2012) for cohesive material/rock and Ashour et al. (2010) for 
cohesionless material. 

Very little site specific strength data is available for cemented 
materials associated with the test shafts in this study. Thus, in 
both SHAFT and CGI-DFSAP, cemented layers (i.e., caliche) are 
modeled as weak rock (O’Neill et al. 1996) with an unconfi 
compressive strength of 29.9 MPa, effective friction angle of 40, 
and a total unit weight of 22 kN/m3. Laboratory test data from in 
Western Technologies Inc. (1994), Arup (2011), and Rinne et al. 
(1996) suggest that these numbers represent the most typical values 
encountered for caliche in the Las Vegas area. Also, CGI-DFSAP 
allows the user to specify the strain at 50% axial strain, E50, for 
each soil layer. For this study, the internally computed values of 
E50 are employed for sands (Norris 1986) and clays (Evans 1982). 
Alternatively, a value of E50 = 0.001 is applied for caliche layers 
based on the average from 10 triaxial compression tests performed 
on caliche samples from Las Vegas by Rinne et al. (1996). 

 

Fig. 6 Histogram of the error associated with output and tar-
get pairs (instances) in the training, validation, and 
testing datasets 

 
 

 

Fig. 7 ANN performance regressions for training, testing, and 
validation 

 

Fig. 8  Progression of ANN validation performance 

O
ut

pu
t (

Y
) 

Target (T) 

O
ut

pu
t (

Y
) 

Target (T) 

O
ut

pu
t (

Y
) 

Target (T) 

Training data
Fit 
Y = T

Validation data
Fit 
Y = T 

Testing data 
Fit 
Y = T 

R2 = 0.9845 R2 = 0.9884

R2 = 0.9905 

In
st

an
ce

s 

Error 

Training 
Validation
Testing 
Zero error

Training 
Validation
Testing 
Best 

M
ea

n 
sq

ua
re

d 
er

ro
r 

(M
S

E
) 

Epochs 



Stanton and Motamed: Estimation of Axially Loaded Drilled Shaft Settlement in Cemented Soil Conditions with an Artificial Neural Network    55 

 

5.  RESULTS 

The load-settlement predictions from each of the three 
methods considered are presented in Fig. 9 and the Root Mean 
Squared Errors (RMSEs) given in Table 15 quantify the overall 
prediction qualities. RMSE is defined by Eq. (5):  

max
, ,0 ( )measured predictedQ Q

RMSE
n


  




 (5) 

where  is the level of vertical displacement at the shaft head, Q 
is the axial load at the shaft head, and n  is the total number of dis-
placement levels considered. 

 

     
(a) ETS1                                  (b) ETS2                                 (c) ETS3 

     
(d) ETS4                                  (e) ETS5                                  (f) ETS6 

      
(g) ETS7                                (h) ETS8                                  (i) ETS9 

        
(j) ETS10 

Fig. 9  Measured and predicted axial load-settlement responses for the evaluation test shafts 
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Table 15  RMSE for different prediction methods 

ETSn 
RMSE (kN) 

CGI-DFSAP SHAFT ANN 

1 25247 7391 10794 

2 13536 13235 5889 

3 4704 7255 11591 

4 12775 20616 35865 

5 5240 18236 8907 

6 7308 10859 2702 

7 18777 19775 7043 

8 11658 24379 25820 

9 11625 27720 5386 

10 6151 3583 1266 

 
 

The plots in Fig. 9 extend to the interpreted nominal capacity of 
each test shaft, defined as the lesser load corresponding to the dis-
placement equal to 5% of the shaft diameter or the onset of 
plunging failure (i.e., displacement with no additional load). 
Some amount of extrapolation was required to meet this criteria for 
4 of the 10 evaluation load tests. 

Inspection of Fig. 9 suggests that, in general, the ANN mar-
ginally outperforms CGI-DFSAP and both the ANN and CGI- 
DFSAP produce more accurate settlement predictions than 
SHAFT. That being said, the performance of each prediction 
method is inconsistent. 

SHAFT overestimated the measured settlements at all load 
levels for all evaluation test shafts except ETS1 and ETS3 (ETS1 
settlement was overestimated for loads greater than approximately 
40000 kN). In addition, blind interpretation of the SHAFT predictions 
would erroneously indicate plunging failure for 6 of the 10 evalua-
tion test shafts. In comparison, CGI-DFSAP predicted consist-
ently stiffer responses than SHAFT and did not suffer from the 
tendency to predict plunging failure prematurely. The relatively 
stiff responses from CGI-DFSAP also represent a general im-
provement over those from SHAFT. While both procedures 
appear more accurate at low levels of displacement (i.e., the 
elastic region), CGI-DFSAP seems to be more capable of capturing 
nonlinear behavior. 

The impact of data quality on RMSE is described by the 
statistics provided in Table 16 and the illustration in Fig. 10. 
These confirm that the mean performance of each prediction 
method, indicated by the RMSE, varies for different data qualities. 

According to Fig. 10, mean RMSE and data quality are 
positively correlated for all prediction methods. Additionally, the 
data given in Table 16 reveals that while the ANN produces the 
lowest mean RMSE in most cases, it is associated with the greatest 
COV for all data qualities. The difference between the minimum 
and maximum RMSE from the ANN is also greatest for the first 
two data quality bins (all data and mean score > 2) but is lower 
than that from SHAFT when the highest quality data is consid-
ered. In light of these observations, the ANN appears to have the 
potential to produce large errors in extreme cases, although its 
best predictions are more accurate than those from CGI-DFSAP 
or SHAFT. 

To gain a sense for how each prediction method performs at 
different settlement stages, any measured responses that did not 
reach the  /D  = 5% failure criteria (i.e., reached plunging first 
were extrapolated to allow comparisons to be made for equiv-
alent levels of displacement. Thus, Fig. 11 presents the mean 

Table 16 Summary statistics of RMSE for three data quality 
bins 

Prediction 
method 

All data Mean score  2 Mean score  3 

Mean 
(kN) 

COV
Mean 
(kN) 

COV 
Mean 
(kN) 

COV

SHAFT 15305 0.53 14058 0.56 10893 0.67 

CGI-DFSAP 11702 0.55 8779 0.41 6233 0.17 

ANN 11526 0.90 8917 1.11 4292 0.95 

 
 
 

 

Fig. 10 Impact of data quality on prediction accuracy (error 
bars indicate min/max)  

 

Fig. 11 Mean RMSE for all evaluation test shaft predictions for 
equivalent settlement stages (defined using settlement 
normalized by shaft diameter)  

RMSE for each prediction method as a function of the settle-
ment level normalized by the shaft diameter. Hence, for each 
settlement stage, the RMSE is computed up to that point for 
each individual load test prediction. Finally, the average RMSE 
across all ten predictions for comparable settlement stages is cal-
culated to provide a single point for one of the curves in Fig. 11 
and the process is repeated for increasingly large settlement 
stages up to  /D  = 5% and again for each prediction method. 

Figure 11 suggests that at lower settlement stages (i.e.,  /D  
 1%), the ANN tends to be less accurate than the t-z style ap-
proaches, which are roughly equivalent to each other. For  /D  
between 1 and 3%, the ANN and CGI-DFSAP accuracy are near-
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ly equivalent and both appear to outperform SHAFT. However, at 
settlement stages greater than  /D  = 3%, the ANN predictions are 
the slightly and significantly more accurate than those from CGI- 
DFSAP and SHAFT, respectively.  

6.  CONCLUSIONS 

It has been demonstrated that a cascaded feed-forward ANN 
trained with back-propagation (using the Levenberg-Marquardt 
method) can predict settlement of axially loaded drilled shafts in 
cemented soils with accuracy comparable to more traditional t-z 
style analyses. Overall, despite being marginally less accurate at 
smaller settlement levels, the ANN achieved the lowest RMSE 
for five of the ten evaluation test shafts whereas CGI-DFSAP 
was most accurate for four cases and SHAFT was most accurate 
for just one case. Also, while the ANN predictions are slightly 
more conservative on average than those from CGI-DFSAP or 
SHAFT, the variation among the ANN predictions is also greater, 
although the variation becomes less significant for higher data 
qualities. Thus, there is still room for improvement. 

Some noteworthy challenges which have been overcome in 
this study regarding the development of an ANN for the purpose 
of drilled shaft settlement analysis include the prevention of neg-
ative settlement predictions (without the use of fuzzy logic) and the 
development of a methodology for determining the ideal architec-
ture for an ANN of this nature (i.e., inputs structure, number of 
hidden layers/neurons, cascaded/not cascaded). The results sug-
gest that the former issue is effectively solved with a logarithmic 
sigmoid activation function applied in the output layer. It is also 
found that the programmatic implementation of the aforemen-
tioned ANN development procedure has the potential to produce 
an ANN with acceptable performance, even with the relatively 
limited GI data available herein. This is particularly useful for 
cases in which strong network generalization is difficult to 
achieve when network configurations are determined through 
manual trial and error. 

Any interested readers are encouraged to contact the first 
author to obtain a copy of the ANN developed for this paper. 
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