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ABSTRACT 

An approach to estimate the required strength of geosynthetics in reinforced earth structures with inclined backslope under 
static and seismic loading conditions is presented in this paper. The results were achieved with a developed algorithm, based on 
pseudo-static limit equilibrium analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent 
earth pressure coefficients and potential failure surfaces are presented. Given the slope angle, the backslope angle, the design 
value of the soil friction angle, the height of the slope, the unit weight of the soil and the seismic coefficients, one can determine 
the required strength of geosynthetics for structure equilibrium. This paper intends to broaden the available design charts for 
geosynthetic reinforced earth structures with non-horizontal backslopes under static and seismic loading, as well as, to provide a 
helpful tool to design preventive measures for unstable slopes. These charts are also particularly useful for those cases in which 
the classical earth pressure theories underestimate the required force for slope equilibrium. 

Key words: Reinforced steep slopes, geosynthetics, pseudo-static analyses, earth pressure coefficients, seismic loading, inclined 
backslope.

1.  INTRODUCTION 
The construction of an embankment with slopes steeper than 

the naturally stable angle requires additional stabilising forces. 
These forces can the provided by horizontal reinforcements lay-
ers placed inside the embankment (geosynthetics) or by a heavy 
facing system (such as gabions or large rocks). The results herein 
presented can be applied to the internal design of geosynthetic 
reinforced steep slopes, as well as, to the design of a stable facing 
system under static and seismic loading conditions. 

In the last decades some methods have been proposed for 
the internal design of geosynthetic stabilised structures. These 
methods can be grouped into three different approaches. The first 
approach, usually limited to reinforced soil slopes, is an exten-
sion of the classical limit equilibrium slope stability methods 
(methods of slices) with the inclusion of the reinforcement forces 
(Wright and Duncan 1991; FHWA 2010; Ghanbari and 
Ahmadabadi 2010; Yang et al. 2011, 2013). The second ap-
proach is based on considerations of limit equilibrium, such as 
two-part wedge or logarithmic spiral analyses (Schmertmann et 
al. 1987; Jewell 1989; Ling et al. 1997; Ling and Leshchinsky 
1998; Vieira et al. 2011; Basha and Basudhar 2010). The third is 
a kinematic approach of limit analysis and can be performed 
considering a continuum medium, through the soil and rein-
forcement homogenization, or two separated structural compo-
nentssoil and reinforcement components (Michalowski 1998; 
Ausilio et al. 2000). This paper follows the second approach. 

The horizontal resultant force due to lateral earth pressures 
that should be supported by the reinforcement layers or by the 

facing system to ensure the structure equilibrium is usually de-
termined by limit equilibrium analyses. The failure surface asso-
ciated with the maximum value of this horizontal force defines 
the critical surface.  

The effect of the seismic loading on the required force for 
slope equilibrium could be based on pseudo-static analyses. 
These analyses are, frequently, considered as conservative since 
transitory earthquake acceleration is assumed to act permanently 
on the structure. A proper selection of the seismic coefficients 
used in the pseudo-static analyses shall compensate for the con-
servatism of these methods. On the other hand, this conservatism 
may counterbalance the acceleration amplification when not im-
plicitly considered in the design. 

This paper presents updated results from a developed com-
puter program, based on limit equilibrium analysis, able to esti-
mate the required strength for slope equilibrium under static and 
seismic loading conditions (Vieira et al. 2011; Vieira et al. 2013; 
Vieira 2014).  

Simplified equations to estimate earth pressure coefficients 
for static and seismic design of geosynthetic reinforced structures 
were previously proposed by Vieira et al. (2011) but these equa-
tions, as the majority of the published results, are limited to hor-
izontal backslopes. In this paper the effect of the inclined back-
slope is introduced. 

The design of geosynthetic reinforced steep slopes is often 
based on design charts, such those proposed by Schmertmann  
et al. (1987) and Jewell (1989) for static conditions or those pro-
posed by Michalowski (1998) and Vieira et al. (2011) for seismic 
loading conditions. However, these design charts are limited to 
horizontal backslopes. The main purpose of this paper is to 
broaden the available design charts to determine the required 
strength for the equilibrium of slopes with non-horizontal back-
slopes. These charts are a really helpful tool particularly for those 
cases in which Coulomb’s earth pressure theory (Coulomb 1776) 
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and Mononobe-Okabe theory (Okabe 1924; Mononobe and 
Matsuo 1929) could underestimate earth pressure coefficients. 

2.  LIMIT EQUILIBRIUM APPROACH 

The two-part wedge failure mechanism is, as mentioned be-
fore, one of the limit equilibrium approaches suitable for the 
evaluation of the required force for equilibrium of unstable 
slopes. With regard to geosynthetic reinforced structures, this 
failure mechanism does not consider explicitly the interaction 
between the soil and the geosynthetics. However, numerical sim-
ulations carried out by Vieira et al. (2013) have shown that re-
quired geosynthetic strength evaluated by limit equilibrium 
methods provides a good estimate for the minimum required 
strength for slope stability. These simulations have also shown 
that, at failure of the reinforced steep slope, the maximum shear 
strains in the backfill occur very close to the potential failure 
surface estimated by the two-part wedge failure mechanism. 

In view of the inclusion of seismic loading effects, the fail-
ure mechanism will be introduced as pseudo-static limit equilib-
rium approach. The horizontal and vertical seismic inertial forces, 
acting at the centre of gravity of the potential failure soil mass, 
are considered through the horizontal and vertical seismic coeffi-
cients, kh and kv, expressed as fractions of the gravitational con-
stant, g. The convention adopted in this paper is that a positive 
horizontal seismic coefficient, kh, corresponds to a seismic iner-
tial force acting outward and a vertical seismic coefficient, kv, 
corresponds to a seismic inertial force acting downward. 

In the two-part wedge mechanism, the potential sliding soil 
mass is divided in two blocks (Fig. 1). In this paper a vertical 
inter-wedge potential failure surface was assumed. Although 
some authors (Jewell 1989) have considered that a vertical and 
smooth (no vertical shear force between the two wedges) inter- 
wedge boundary lead to conservative results, Vieira et al. (2013) 
have shown that a two-part wedge failure mechanism with a ver-
tical inter-wedge boundary is not a factor of conservatism. The 
conservatism of the results comes from the assumption of a 
smooth inter-wedge surface. 

The force Pae, schematized in Fig. 1 at the face of the struc-
ture, represents the minimum value of the required force, which 
should be supported by the reinforcement layers, to ensure struc-
ture equilibrium (i.e., to ensure a stabilizing force equal to the 
horizontal component of the unstable force). 

Usually, the horizontal component of the earth pressure co-
efficient is the parameter used in the analysis of facing stability 
or reactive force in reinforcements, hence the required force for 
equilibrium, Pae, was considered horizontal. The inter-wedge 
force was considered by its horizontal and vertical components, 
H1 and V1, related by the following equation:  

1 1 tanV H     (1) 

where  is the inter-wedge mobilized shear stress ratio (a user 
defined variable) and  is the soil internal friction angle. The 
effect of the direction of the inter-wedge force, expressed by , 
on the equivalent earth pressure coefficient, Kreq, was analysed by 
Vieira et al. (2013). These authors found that a horizontal inter- 
wedge force (  0) is very conservative, moreover, since it is 
assumed the full mobilization of the soil shear strength along the 
failure surfaces OA and AB (Fig. 1), to be consistent, the present 

study considers   1 (soil shear strength fully mobilized in the 
inter-wedge vertical surface). 

Obviously, the geometry of the blocks that leads to the 
maximum value of the required force for equilibrium, i.e., the 
geometry shown in Fig. 1, is not known. Thus a computer code 
was developed to find the most critical failure surface, that is to 
say the one that leads to the maximum horizontal force required 
for slope equilibrium, Pae. 

To find the critical failure surface the software creates a 
square mesh of points, with lateral side equal to the height of the 
structure and spacing between points equal to 1 of the mesh 
side. For each of these points (represented by point A in Fig. 1), 
several potential failure surfaces are analyzed, ranging the angle 
1 (see Fig. 1) from 2 to 90 with increments of 0.1.  

The two-part wedge failure mechanism degenerates to a sin-
gle wedge with a plane failure surface when this mechanism is 
more adverse (for instance when the slope face is near vertical). 

The equilibrium equation, on horizontal direction, of the 
forces acting on wedge 1 (Fig. 1), taking into consideration the 
relation between the horizontal and vertical components of the 
inter-wedge force stated by Eq. (1), provides the horizontal 
component of the inter-wedge force, H1:  
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(a) Geometric characteristics of the slope 

 

(b) Two-part wedge failure mechanism 
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Known the horizontal component of the inter-wedge force, 
H1, the required force for equilibrium, Pae, for each potential 
failure surface, can be calculated by the equilibrium, on horizon-
tal direction, of the forces acting on wedge 2, with the equation: 

 2 2
1 2 2 1

2 2

tan cos sin
(1 )

tan sin cos
ae h vP H k W k W V

   
     

   
 

  (3) 

The bilinear failure surface, to which corresponds the max-
imum value of Pae is considered the critical failure surface. 

For static conditions, the need of reinforcement or the need 
of the facing system to reach the slope equilibrium is usually 
represented by an earth pressure distribution. By the similarity 
between critical potential failure surfaces, Terzaghi (1943) 
demonstrated that the earth pressure distribution at the back of a 
wall increases, like a hydrostatic pressure, in simple proportion to 
depth.  

Most design suggestions available for geosynthetic stabi-
lised slopes under seismic conditions (Ausilio et al. 2000; Nouri 
et al. 2008; Vieira et al. 2011) assume the linear (increasing with 
depth) distribution of reinforcement force. Furthermore, numeri-
cal analyses carried out by Bathurst and Hatami (1998) and 
Vieira et al. (2006) showed that for walls with a sliding base, 
dynamic loads increase in a generally linear fashion with depth 
bellow the crest of the wall. Therefore, assuming that the earth 
pressures increase linearly with depth, the required force for 
slope equilibrium, Pae, could be expressed by: 

21

2
ae reqP K H    (4) 

where Kreq is an equivalent earth pressure coefficient,  is the soil 
unit weight and H is the slope height. The results will be ex-
pressed, in sequence, by the equivalent earth pressure coefficient. 
This earth pressure coefficient, Kreq, can be used to determine the 
required tensile strength of the reinforcement layers.  

For a given vertical spacing between reinforcement layers, 
Sv , a reinforcement with a proper allowable strength should be 
selected, to provide at each depth an available stress greater than 
the required stress for equilibrium (evaluated with Kreq). This 
means that the available stress (provided by the reinforcements) 
must equal or exceed the required stress at every depth, or in 
terms of forces: 

d req vT K zS    (5) 

where Td represents the design value of the reinforcement 
strength per unit width and z the depth of the reinforcement layer. 

Note that when vertical seismic acceleration is considered, 
the equivalent earth pressure coefficient, Kreq, is not equal to the 
Mononobe-Okabe earth pressure coefficient (Okabe 1924; 
Mononobe and Matsuo 1929), Kae, even for a structure with ver-
tical face. For the particular case of structures with vertical face, 
the critical failure surface degenerates to a single wedge surface, 
coincident with the one assumed by the Mononobe-Okabe ap-
proach, but the equivalent earth pressure coefficient, Kreq, is 
equal to: 

(1 )req v aeK k K    (6) 

where kv represents the vertical seismic coefficient. 

3.  RESULTS AND DISCUSSION  

3.1  General Aspects 

The results presented in this paper regards purely frictional 
materials, with internal friction angle in the range of 20~ 45, 
slope angles between 40 and 90, backslope angles in the range 
0~ 18.4, zero pore water pressure (ru  0) and a competent 
foundation. 

The effect of the seismic loading on the required force for 
slope equilibrium was based on a pseudo-static analysis. In the 
parametric analysis, the horizontal seismic coefficient was con-
sidered in the range 0 ~ 0.30. The vertical seismic loading was 
considered through a vertical seismic coefficient, kv, defined as a 
function of the horizontal seismic coefficient, kh. The ratio kv / kh 
has assumed values of 1.0, 0.5, 0.5 and 1.0. When the ver-
tical inertial forces act downwards, kv is considered a positive 
value. 

3.2  Results for Static Loading 

The effect of the backslope angle on the equivalent earth 
pressure coefficient, Kreq, as a function of the slope angle, , con-
sidering frictional materials with  equal to 30º and 40º is illus-
trated in Fig. 2. The backslope angle was expressed in Fig. 2 by 
the ratio of the vertical to the horizontal distances (V : H). 

The effect of the backslope angle on the required force for 
equilibrium seems to increase with slope angle, . Assuming a 
friction angle, , equal to 30 (Fig. 2(a)) , the equivalent earth 
pressure coefficient, Kreq, increased approximately 23 and 29 
when the backslope ranges from horizontal to an angle of 18.4, 
for   60 and   80, respectively. These variations decreased 
to 11 and 18, respectively, for a friction angle of 40 (Fig. 
2(b)). Thus it can be concluded that the effect of the backslope on 
the required force for equilibrium decreases with the soil friction 
angle and is more significant for steeper slopes. 

Figure 3 illustrates the effect of soil friction angle on critical 
failure surfaces for embankments with slope angles of 60 (Fig. 
3(a)) or 80 (Fig. 3(b)) and a backslope angle of 11.3 (1V : 5H). 
As expected the volume of soil potentially in failure decreases 
with the soil friction angle. While the potential failure surfaces 
for   60 are bilinear (Fig. 3(a)), for the steeper slope the criti-
cal failure surfaces become planar (Fig. 3(b)) and coincident with 
those admitted in Coulomb’s earth pressure theory (Coulomb 
1776).  

Figure 3(a) provides evidence that the Coulomb’s earth 
pressure theory is not suitable to estimate the potential failure 
surface for an embankment with slope angle of 60. The potential 
failure surface reached with the two-part wedge failure mecha-
nism (T-W) (to which corresponds the maximum value of the 
horizontal force for slope equilibrium-critical failure surface) and 
the planar failure surface assumed in the Coulomb’s earth pres-
sure theory, for   60 and soil friction angle of 30 are illus-
trated in Fig. 4. The values of the equivalent earth pressure coef-
ficient obtained by the developed code (Fig. 2(a)) and the value 
estimated by Coulomb’s theory are also included in Fig. 4. 
Comparing these values it can be concluded that Coulomb’s earth 
pressure theory underestimates around 14 the required force for 
slope equilibrium. 
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(a) Soil friction angle,   30(b) Soil friction angle,   40

Fig. 2  Effect of the backslope angle on the required force for equilibrium 

         
(a) Slope angle,   60(b) Slope angle,   80 

Fig. 3  Effect of soil friction angle on critical failure surfaces for backslope angle,   tan1 (1/5) 

 
Fig. 4 Comparison of the critical failure surface achieved by the T-W mechanism with that admitted by Coulomb’s theory, 

  60;   tan1 (1/5) 
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When the slope angle, , is not close to 90, Coulomb’s 
earth pressure theory should not be used to estimate the value of 
Kreq, since it does not correspond to the maximum value of the 
horizontal force to reach the slope equilibrium. Based on this 
evidence, Vieira (2014) has proposed a simplified approach that 
provides an extension of the Coulomb earth pressure theory to 
the stability analyses of steep slopes. For static loading condi-
tions, the equivalent earth pressure coefficient can be estimated 
by (Vieira 2014): 

 

2

sin( )

sin( ) cos( )
sin 1

sin( )

1 cos cos( ) cos( )

aprox
reqK

 
 

                 

        (7)

 

where  is the slope angle,  is the backslope angle and  is the 
bakcfill internal friction angle. 

3.3  Effect of Horizontal Seismic Loading 

The effect of the horizontal seismic coefficient, kh, on the 
equivalent earth pressure coefficient for structures with slope 
face inclined at 60 and 80 and backslope angle of 11.3 (1V : 
5H) is represented in Fig. 5. As expected, the greater the hori-
zontal seismic coefficient, the larger the horizontal force for 
slope equilibrium. Comparing the values of Kreq for seismic 
loading with those obtained for static conditions (kh  0), the 
increase induced by the seismic action is higher for the flatter 
slope. For instance, assuming  equal to 30, the increment of 
Kreq induced by a horizontal seismic loading with kh  0.3 is, ap-
proximately, 257 and 152 for   60 and   80, respec-
tively. However, it should be noted that these increases do not 
represent the real increments of the required force for slope equi-
librium induced by the seismic action. The partial safety factors 
considered in the seismic design are usually lower than those 
used in static conditions.  

Figure 6 illustrates the effect of the horizontal seismic coef-
ficient, kh, on critical failure surfaces for slopes with 60 (Fig. 
6(a)) and 80 (Fig. 6(b)), backslope angle of 11.3 (1V : 5H) and 
soil friction angle equal to 30. Not unexpectedly, the volume of 
soil potentially in failure increases with the horizontal seismic 
coefficient. Although, the rate of increase of soil volume is 
greater than that of the horizontal seismic coefficient, kh.  

The critical failure surfaces for the steeper slope illustrated 
in Fig. 6(b) are coincident to those estimated by the Mononobe- 
Okabe earth pressure theory. For the flatter slope (  60), the 
potential failure surface is not linear and Mononobe-Okabe theo-
ry underestimates the unstable soil volume and consequently, the 
required force for slope equilibrium (Fig. 7). 

Figures 8 to 11 summarize the required force for slope equi-
librium (expressed by Kreq) for horizontal seismic coefficient 
equal to 0 (static loading), 0.1, 0.2 and 0.3, assuming slope an-
gles in the range 40 ~ 90 and backfill material with an internal 
friction angle between 20 and 45.  Figure 8 refers to structures 
with horizontal backslope and Figs. 9, 10 and 11 are referring to 
backslope angles of 5.7, 11.3 and 18.4, respectively.  

3.4  Effect of Vertical Seismic Loading 
In the particular case of the design of geosynthetic rein-

forced steep slopes, the effect of the vertical component of seis-
mic action is not explicitly considered in the generality of the 
codes (AASHTO 2002; FHWA 2010; NCMA 1998; JRTRI 
1999). For some of them, the consideration of a vertical seismic 
coefficient infers that the maximum values of the vertical and the 
horizontal components of the seismic action occur simultaneous-
ly. Some results are presented in this study to clarify the real 
effects of neglecting the vertical seismic action on the required 
force for slope equilibrium. 

As mentioned in 3.1, the vertical seismic loading is consid-
ered through a vertical seismic coefficient, kv, defined as a func-
tion of the horizontal seismic coefficient, kh. For the ratio kv / kh, 
values of 1.0, 0.5, 0.5 and 1.0 were considered. The sign of 
kv is positive when the corresponding vertical inertial forces act 
downwards. 

Figure 12 shows the effect of kv on the required force for 
slope equilibrium, expressed by the equivalent earth pressure 
coefficient, Kreq, for slope angles, , equal to 60 and 80, hori-
zontal backslope and an horizontal seismic coefficient, kh equal 
to 0.2. For comparison purposes, it is also represented the equiv-
alent earth pressure coefficient for static conditions (kh  kv  0). 

When vertical inertial forces act downwards (kv  0) the re-
quired force for slope equilibrium increases (comparatively to the 
force demanded when kv  0). The effect of kv seems also to in-
crease with the slope angle. For the steeper slope (Fig. 12(b)), the 
increase induced by kv is almost independent of the backfill fric-
tion angle. For   60, the effect of kv seems to slightly decrease 
with .  

The effect of kv on the required force for slope equilibrium 
for non-horizontal backslope is illustrated in Fig. 13. Figure 13 
refers to structures with slope angle, , equal to 60 and 80, 
backslope angle of 11.3 (1V : 5H) and an horizontal seismic 
coefficient, kh equal to 0.2.  

For the two slope angles under analysis (  60 and   
80), when soil friction angle is low (  25) and the vertical 
inertial forces act upwards (kv  0), the required force for slope 
equilibrium exceeds the value for kv  0 (and also the value for  
kv  0). This trend is the opposite of the evidence illustrated in 
Fig. 12, for structures with horizontal backslope (greater required 
force for slope equilibrium when kv  0). 

In order to explain this behaviour for soils with low shear 
strength, Fig. 14 illustrates the effect of the vertical seismic coef-
ficient on the critical failure surface for a structure with slope 
angle equal to 60, backslope angle of 11.3 (1V : 5H), kh  0.2 
and considering the soil friction angle equal to 25 (Fig. 14(a)) or 
30 (Fig. 14(b)). Regardless of soil friction angle, when the ver-
tical inertial forces act upwards (kv  0), the volume of soil po-
tentially in failure is larger than the corresponding soil failure 
volume for kv  0. The highest values of the required force for 
equilibrium when kv  0 and    25 (Fig. 13(a)), comes from 
the large increase of the weight of the soil potentially in failure 
(Fig. 14(a)). Even with the weight reduction induced by the up-
wards vertical inertial force, the vertical force (1 kv)W (see Fig. 
1(b)) is larger than the weight of the soil potentially in failure 
when kv  0. Thus, the required force for slope equilibrium, Pae, 
when kv  0 exceeds the value achieved for kv  0.  
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(a)   60,   tan1(1/5)                                             (b)   80,  tan1(1/5) 

Fig. 5  Effect of the horizontal seismic coefficient, kh, on the earth pressure coefficient 

             
(a) Slope angle,   60                                                (b) Slope angle,   80 

Fig. 6  Effect of the horizontal seismic coefficient, kh, on critical failure surfaces for backslope angle,   tan1 (1/5) and   30 

 
Fig. 7 Comparison of the critical failure surface achieved with the developed code with the Mononobe-Okabe failure surface, 
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(a) Static conditions (kh  0)                                                      (b) kh  0.10 

 

     

(c) kh  0.20                                                             (d) kh  0.30 

Fig. 8  Design charts for slopes with horizontal backslope 
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(a) Static conditions (kh  0)                                                      (b) k 0.10 

 
 
 

     

(c) kh  0.20                                                            (d) kh 0.30 

Fig. 9  Design charts for slopes with backslope angle,   tan1 (1/10) 
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(a) Static conditions (kh  0)                                                    (b) kh  0.10 

 
 
 

     

(c) kh  0.20                                                            (d) kh  0.30 

Fig. 10  Design charts for slopes with backslope angle,   tan1 (1/5) 
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(a) Static conditions (kh 0)                                             (b) kh  0.10 

     
(c) kh  0.20                                                   (d) kh  0.30 

Fig. 11  Design charts for slopes with backslope angle,   tan1 (1/3) 

    
(a)   60                                                  (b)   80 

Fig. 12  Effect of the vertical seismic coefficient, kv , on the earth pressure coefficient for horizontal backslope (kh  0.2) 
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(a)   60,   tan1 (1/5)                                          (b)   80,   tan1 (1/5) 

Fig. 13  Effect of the vertical seismic coefficient, kv , on the earth pressure coefficient (kh  0.2) 

     
(a)   25                                                     (b)   30 

Fig. 14 Effect of the vertical seismic coefficient, kv , on critical failure surfaces for backslope angle,   tan1 (1/5), and slope angle,   60 

It is worth mentioning that for the two slope angles under 
analysis (  60 and   80), the maximum increase in the re-
quired force for equilibrium induced by the vertical seismic ac-
tion is around 11% and occurs for structures with horizontal 
backslope. 

Even if the definition of the minimum length of reinforce-
ments is outside the scope of this paper, it is important to point 
out that reinforcements’ length has an utmost importance in the 
stability of geosynthetic reinforced structures.  

It is unfeasible, from the practical point of view, to define 
the minimum reinforcement length under seismic loading condi-
tions by the critical failure surfaces illustrated in Figs. 6 and 14, 
particularly when a seismic inertial force acting upward (kv  0) 
is admitted. In such cases, a more realistic design should be car-
ried out, through analyses that consider the available reinforce-
ment strength at each layer. If the available reinforcement 

strength at the lowest reinforcement layers is greater than the 
minimum required value (see Eq. (5)), the mobilization of the 
strength of the reinforcement layers placed at lower depths is not 
necessary to achieve the equilibrium (stability). 

4.  CONCLUSIONS 

This paper presented a pseudo static-limit equilibrium ap-
proach, which uses a two-part wedge failure mechanism, to 
achieve the required reinforcement strength of geosynthetics in 
reinforced slopes with inclined backslope. 

Design charts and potential failure surfaces were presented. 
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cient to estimate the required force to design a stable slope.  
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Based on the analysis and interpretation of the results pre-
sented herein, the following conclusions can be drawn: 

 1. The effect of the backslope on the required force for slope 
equilibrium under static conditions decreases with the soil 
friction angle and is more significant for steeper slopes. 

 2. When the slope angle is not close to 90 (vertical facing), 
Coulomb’s earth pressure theory and Mononobe-Okabe 
theory should not be used to estimate the required force for 
equilibrium, since they do not provided the critical failure 
surface.  

 3. The increase of the required force for slope equilibrium in-
duced by the seismic loading, comparatively to the one re-
quested in static conditions, grows with the backfill internal 
friction angle and has greater significance for flatter slopes. 

 4. The effects of the vertical component of seismic loading on 
the required force for slope equilibrium are not very signifi-
cant. However the upwards vertical inertial forces should 
not be neglected particularly for soils with low shear 
strength. 
It should be noted that the study herein presented focuses 

mainly on internal failure due to tensile over-stress of reinforce-
ments. The location of failure surfaces, an important issue for the 
internal stability against pullout failure, is also illustrated through 
the paper. Theoretically the anchorage length of each geosyn-
thetic layer must extend beyond the critical failure surface to 
resist pullout failure. However, for seismic design it is unfeasible 
to define the minimum reinforcement length by these critical 
failure surfaces. In such cases, the available strength at each re-
inforcement layer should be considered for determining the 
minimum length. 
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NOMENCLATURES 

 g acceleration of gravity (m/s2) 
 H height of structure (m) 
 H horizontal distance in the backslope (m) 
 V vertical distance in the backslope (m) 

 H1 horizontal component of inter-wedge force (Fig. 1) 
(kN/m) 

 kh horizontal seismic coefficient (dimensionless) 
 Kreq equivalent earth pressure coefficient (dimensionless) 

 Kae Mononobe-Okabe earth pressure coefficient 
(dimensionless) 

 Kv vertical seismic coefficient (dimensionless) 
 N1 normal force acting at the base of wedge 1 (kN/m) 
 N2 normal force acting at the base of wedge 2 (kN/m) 
 Pae required force for equilibrium (kN/m) 

 S1 shear force acting at the base of wedge 1 assuming full 
mobilization of soil shear strength (kN/m) 

 S2  shear force acting at the base of wedge 2 assuming 
full mobilization of soil shear strength (kN/m) 

 Sv vertical spacing between reinforcement layers (m) 
 Td design value of the reinforcement strength (kN/m) 
 V1 vertical component of inter-wedge force (kN/m) 
 W weight of failure mass (kN/m) 
 W1  weight of wedge 1 (kN/m) 
 W2  weight of wedge 2 (kN/m) 
 z  depth of reinforcement layer (m) 
  backslope angle () 
  slope angle () 
  soil internal friction angle () 
 d design value of backfill internal friction angle () 
  backfill unit weight (kN/m3) 

  inter-wedge mobilized shear stress ratio 
(dimensionless) 

 1 angle to the horizontal of potential failure surface at the 
base of wedge 1 () 

 2 angle to the horizontal of potential failure surface at the 
base of wedge 2 () 
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