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ABSTRACT 

This paper incorporates a simple secondary compression model into the finite strain one-dimensional consolidation equation 
to calculate the volumetric strain time curve. An explicit finite difference method is used to solve the differential consolidation 
equation. Results are compared with the laboratory test data with widely different load increment ratio and results calculated from 
another conventional consolidation equation expressed by the excess pore pressure. The validity for the assumption of the 
coefficient of volume compressibility defined by the primary compression and the adaptability of the explicit finite difference 
consolidation analysis are also discussed. It is emphasized that the analysis proposed in this paper is convenient to a rule of trial 
and error in order to check the coefficient of volume compressibility defined by the primary compression if it is reasonable or not. 
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1.  INTRODUCTION 
In a conventional one-dimensional consolidation test, the 

soil specimen is confined laterally by a rigid metal ring 6 cm 
inside diameter and 2 cm in depth and consolidated in the vertical 
direction. The maximum distance for pore water to flow for the 
drainage is about 1 cm as the specimen is located between two 
highly permeable metals. The rate of consolidation is obtained by 
observing the consolidation settlement at frequent time intervals 
and the specimen is left under a given constant load for about one 
day until the next load increment is added. Fig. 1 shows the rela-
tionship between the compression index and the typical one- 
dimensional consolidation settlement time curves. The settlement 
of some clays under sustained loading continues almost indefi-
nitely but the primary consolidation component finally ought to 
reach the ultimate settlement at the end of the primary consolida-
tion. All of the primary consolidation occurs in very short time, 
usually in less than about one hour. Additional secondary com-
pression will occur if the specimen is left under a given load 
more than one day. Accordingly, it is difficult to observe the 
typical inverted “S ” shape of the entire time-compression curve 
with pronounced primary consolidation effects when plotted to a 
semi-logarithmic graph. Secondary compression is notable after 
primary consolidation is completed but may occur also during the 
primary consolidation period (Taylor 1948). As only the total 
settlement which consists of primary and secondary compression 
can be read on dial gage in the conventional consolidation test, it 
is impossible to measure separately the secondary compression 
involved in the total compression during primary consolidation. 

     
 

Fig. 1 Primary and secondary settlement-time curve 
(for illustration only) 

Consequently, the secondary compression behaviors during pri-
mary consolidation is not fully understood by the experimental 
evidence. If the compression index  defined by the total com-
pression is adopted to evaluate the primary compression, the 
studies on primary and secondary compression are doubtful. The 
compression index or the coefficient of compressibility calculat-
ed by the total compression at the elapsed time of one day in-
cludes the effects of secondary compression. It should be deter-
mined by the amount of primary compression. It is the purpose of 
this paper to examine the assumption for the ratio of primary and 
secondary compression involved in the total compression and 
also to present a simple one-dimensional finite difference analy-
sis in terms of finite strain consolidation taking account of the 
secondary compression. 

Finite strain consolidation theories have been independently 
established by Mikasa (1963) and Gibson et al. (1967), although 
it is well known that the conventional consolidation theory based 
on the dissipation of excess pore pressure has been developed by 
Terzaghi (1943). This paper compared the two kinds of the con-
solidation analyses according to the different equation. It is 
shown that the calculation owing to the finite strain consolidation 
equation is simple and can be solved relatively easily. 
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2. CONSOLIDATION EQUATIONS AND 
SECONDARY COMPRESSION  

Assuming Darcy’s law and the linear stress strain relation 
for saturated clays to be valid, the continuity condition that gov-
erns one-dimensional consolidation can be expressed as follows. 
where  is the total volumetric strain ( vertical strain), t is the 
time, mv is the coefficient of volume compressibility, y is the 
applied stress component in the y-direction, u is the excess pore 
pressure, k is the permeability. Equation (1) is the basic differen-
tial equation of Terzaghi’s consolidation theory (Terzaghi 1948) 
and the second term y / t of Eq. (1) means the rate of the time- 
dependent load.   
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Equation (2) of the finite strain consolidation developed by Mi-
kasa (1963) is well known to be equivalent to Eq. (1). Although 
the term of the time-dependent load cannot be found out, the 
derivation of Eq. (2) does not require that the applied load is kept 
constant during a process of consolidation. In the case of time- 
dependent load, the volumetric strain at the drainage boundary is 
a function of the applied load. The relation between the vertical 
effective stress increment and the vertical ( volumetric) strain is 
given by Eq. (3). 

( const.) ( time) ( time)* ( const.)v y v ym m         
  (3) 

The left side relation in Eq. (3) means the case of the time- de-
pendent loading and the right side one may be equivalent to the 
elasto-visco-plastic behavior. When taking account of secondary 
compression, the volumetric strain behavior at the drainage 
boundary is analogous to the case of time-dependent loading. It is 
also well known that it is very easy for Eq. (2) to deal with the 
time-dependent loading. In one-dimensional consolidation the 
rate of the total volumetric strain   has been traditionally di-
vided in primary and secondary compression component. 

( / ) ( )p p st m u             (4) 

where p  and s  are the rate of primary and secondary com-
pression, respectively, mp is the coefficient of volume compressi-
bility defined by the primary volumetric strain and the super-
posed “” implies time rate. 
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where  / ( )v w pc k m     is the coefficient of consolidation 
defined by using the primary volumetric strain. The third term of 
Eq. (5) /s pm  is equivalent to the pore pressure induced by 
secondary compression (Takeda et al. 2012). Consolidation Eqs. 

(2) and (5) can be solved by the explicit finite difference solution 
under the following boundary and initial conditions (6) and (7), 
respectively. 
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where H is the length of the longest drainage path and u0 is the 
initial excess pore water pressure. It is obvious that Eqs. (6) and 
(7) do not include the condition concerning one-dimensional 
deformation. Finite difference consolidation analysis assumes 
that the change in excess pore pressure during consolidation 
merely leads to the increase of the vertical strain.  

If the finite element method is adopted for the consolidation 
analysis, the coupled matrix equation based on Biot’s theory can 
take account of one-dimensional compression conditions and be 
written as follows (Smith 1982)： 
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where K  is the stiffness matrix, P  is the permeability matrix, 

C  is the coupling matrix, dt is the nodal displacements and ut is 

the nodal excess pore pressure. Subscript “t” means a time. tF  

are the external nodal loads and sF  are the equivalent nodal 

force converted from secondary compression. The total strain 

components   are calculated by using dtt obtained from Eq. 

(8). and then, effective stresses   and equivalent nodal forces 

sF  are obtained from Eqs. (9) and (10), respectively. 

( )sD       (9) 

T
ssF B D dv    (10) 

where D  is the stress-strain matrix, B  is the strain-     

displacement matrix and s  is the strain components based on 

secondary compression. In this paper, the Bulk modulus K in-

volved in D  matrix is simply assumed to be equal to the in-

verse of mp. K and the shear modulus G are expressed by Eqs. 

(11) and (12), respectively. 
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where  is Poisson’s ratio. 
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In order to calculate secondary compression behaviors, Eq. 
(13) is used in this paper although the studies on secondary com-
pression model are extensive and an analogous one is presented 
by the Authors in a previous paper (Takeda et al. 2012). 

ln( / )s it t     (13) 

where t is the elapsed time at depth y of the consolidation layer 
and the time ti means the beginning of secondary compression 
and is not equal to time for the end of primary consolidation. 

If the magnitude of primary compression p is assumed and 
then, at a time tf the total compression f is obtained from the 
consolidation test, secondary compression is given by 

; /s f p p p ym        (14) 

Substituting the above relation into Eq. (13), the time ti can be 
calculated from the following Eq. (15) as 

exp( / )i f st t     (15) 

The numerical procedure and secondary compression model de-
scribed above are used to predict the settlement-time curve in 
one-dimensional consolidation tests. 

3.  EXAMPLE OF CALCULATION  

3.1  Soil Parameters 

Figure 2 presents the volumetric strain-time curves calcu-
lated by Eq. (2) together with the observed values reported by 
Aboshi (1973). 

The procedure of determining the parameters is as follows: 

 1. The coefficient of volume compressibility mv is calculated 
from the volumetric strain f of one day after. The coeffi-
cient of volume compressibility mp defined by the amount of 
primary compression is arbitrary assumed to be less than the 
value of mv. The ratio of mp to mv is named primary consol-
idation ratio in Japan. 

 2. The coefficient of consolidation cv is estimated by the 
square root of time method. 
Tv  H 2 / t90  0.848  12/14.5  0.06 (cm2/min) 
This value is affected by secondary compression. cv value 
should be determined by the primary consolidation time 
curve although there is little possibility. 

 3. The coefficient of secondary compression  is easily deter-
mined from the final slope of the semi-logarithmic plot of 
the consolidation-time curve after the primary consolidation 
has ended. 
  0.43   / log(t2 / t1) 
 0.43  0.0155/log(1440/180)  3.3  103 

 4. If the value of mp is assumed, the value of s obtained from 
Eq. (14) corresponds to tf  1440 min and ti is calculated by 
Eq. (15).  As shown in Fig. 2, four kinds of the value of mp 
are used in the trial and error calculation. 
As can be seen in Fig. 2 secondary compression begins after 

the end of primary consolidation in the case of mp / mv  0.9. The 
predicted values using mp / mv  0.5 underestimates the strain. 

Good agreement between the predicted observed volumetric 
strain-time curves may be seen to be close when the value of mp 

 
Fig. 2  Volumetric strain-time curves 

is assumed to be equal to 0.7 or 0.6. Figure 3 shows the calculat-
ed volumetric strain-time curves in the pervious boundary. These 
curves are equivalent to the time dependent behaviors under the 
consolidated drained creep test for clays with an infinite permea-
bility. The magnitude of assumed primary compression can be 
confirmed by the calculated values before the time ti Almost time 
ti may be less than that of the end of primary consolidation. ti 
corresponds to the drainage distance H = 1 cm and depends on 
f at tf. 

3.2  Maximum Drainage Distance H and ti 

There is little experimental evidence of the effect of sample 
thickness on secondary compression. Ladd et al. (1977) present 
two cases, Hypothesis A and B for time effects on one-      
dimensional consolidation time curves. Aboshi (1973) has shown 
one dimensional consolidation time curves on specimens with 
several initial thickness and the observed results have supported 
Hypothesis A in which the curve of thin sample simply displaced 
in proportional to the squared ratio of the drainage distance as 
shown in Fig. 4. 

The basic soil parameter already given are used to predict 
the behavior of thick sample (H  10 cm) set up with the same 
boundary conditions as the thin sample (H  1 cm). 

If ti is assumed to be independent to the change of the 
drainage distance, the predicted volumetric strain-time curves are 
denoted by the broken line in Fig. 4. However, if ti depends on 
H 2 rule, the predicted curves are shown by solid lines. The ob-
served curve tends to substantiate the latter assumption. It can be 
considered that an important point is how to postulate the time ti 
for field clay layers with different drainage distance. 

3.3  Another Consolidation Equations 

Figure 5 presents the comparison of results denoted in Fig. 2 
with calculated values due to Eqs. (5) and (8) in terms of excess 
pore pressure. Please note that the results by Eq. (8) were ob-
tained with FEM, while the results by Eq. (2)-finite strain con-
solidation and Eq. (5)-conventional consolidation theory were 
obtained by FDM. 

In finite difference analysis, the maximum drainage distance 
is divided into 45 equal layers (y  H/45). However, in finite 
element calculations, it is divided into 10 equal elements as 
shown Fig. 6. The same parameters described the above section 
are used again to the calculation based on Eqs. (5) and (8). 

Observed 
(Aboshi, 1973) 
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Fig. 3 Calculated volumetric strain-time curves at the drainage 

boundary 

 
Fig. 4 Volumetric strain-time curves with different drainage 

distance 

 
Fig. 5  Volumetric strain-time curves 

 
Fig. 6  FE mesh 

The best obtained fits are shown in Fig. 5. As can be seen, 
there is reasonable agreement among the predicted volumetric 
strain-time curves. 

4.  LABORATORY INVESTIGATION 

Average physical properties for clays are specific gravity 
2.64, liquid limit 67 and plastic limit 36. Portions of 
different particle sizes are sand 11, silt 55 and clay  
34. The undisturbed clay samples are normally pre-      
consolidated under the vertical pressure 39.2 kPa. 

One-dimensional consolidation tests are conducted for the 
various prescribed load increment ratio y / y0, which ranged 
widely from 0.25 to 1.5. 

The prediction is again confirmed by finite difference analy-
sis based on Eq. (2). Load increment and soil constants are given 
in Table 1. The coefficient of secondary compression  increases 
with the load increment ratio y / y0. It is difficult to deter-
mine 90 primary compression according to the square root of 
time method. Therefore the value of cv with a under line is as-
sumed by the curve fitting method. 

As can be observed in Figs. 7 and 8, the proposed analysis 
due to Eq. (2) predicts also the remarkable accuracy the volumet-
ric strain-time curves for the different loading increment ratios. 

Figure 7 presents the results by means of the trial and error 
calculation in which the value is assumed to be equal to 0.9, 0.65 
or 0.55. The numerical results by means of Eq. (2) for all exper-
imental results showed that a ratio of 0.65 is a best fit, as shown 
in Fig. 8. From these curves it may be shown that for the as-
sumed value of mp / mv, ti tends to increase with the reduction of 
the load increment ratio. The agreement between the observed 
and predicted curves is again seen to be reasonable. 

At present it is impossible to confirm whether the assump-
tion used in above calculations is good or not. 

Table 1  Soil constants related to consolidation test 

Load (kPa) 9.8 14.7 19.6 29.4 39.2 58.9
mv (1/kPa) 2.07 3.11 4.00 4.87 4.97 4.64
  103 0.342 0.636 0.845 1.03 1.05 1.22
t90 (min)    7.5 4.2 3.6 

cv (cm2/min) 0.01 0.02 0.05 0.1 0.18 0.20
ti (min) 174 112 54 11 2.1 0.6 

 

Fig. 7 Volumetric strain-time curves in trial and error 
calculations 

Calculated FEM 

Observed 
(Aboshi, 1973) 

Observed 
(Aboshi, 1973) 

Strain Eq. (2) 

Pore pressure Eq. (5)

Calculated 
FDM 

P 19.6 kPa 

P 29.4 kPa 

P0 39.2 kPa 
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Fig. 8 Volumetric strain-time curves for various load 

increment ratio 

5.  CONCLUSIONS 

Finite difference method of analyzing one dimensional con-
solidation taking account of secondary compression developed 
from the finite strain consolidation equation, appears to give re-
liable predictions of the volumetric strain-time curves for labora-
tory consolidation tests with widely different load increment ratio. 
However, the proposed analysis needs to assume the ratio of the 
primary and total volumetric strain. It is currently impossible to 
measure separately the primary compression included in the total 
compression. There is no reliable method other than a rule of trial 
and error. However, by the use of the proposed analysis, the ef-
fects of secondary compression taking place during the primary 
consolidation can be successfully interpreted. 

In applying the laboratory consolidation test to practical 
field cases, it must be recognized that the problem of similitude 
consolidation of clay layers depend on not only the constitutive 
model of clays but also the assumption of soil constants used in 
the numerical solution. Finally, finite difference program used in 
this paper is listed in the appendix and is also available to the 
readers in this journal.  

APPENDIX  

One-dimensional consolidation analysis based on the explic-
it finite strain consolidation equation by Excel VBA. 

Option Explicit 

Sub FDM() 
 
Range(Cells(1, 5), Cells(35, 7)).Select 
Const n As Integer = 11          '  n = number of nodal point 
Dim A(n) As Double, B(n) As Double  
Dim H As Single, CV As Single, DP As Single, EF As Single, MV As Single 
Dim AL As Single, VFD As Single, MP As Single, EP As Single, ES As 
Single 
Dim VID As Single 
Dim U As Single, TV As Single, DT As Single, CT As Single, SUM As Single 
Dim i As Integer, k As Integer, m As Integer 
 
H = Range("B3")     '  H = Maximum drainage distance cm 
CV = Range("B5")    '  CV = Coefficient of consolidation cm2/min 
MV = Range("B7")  
' MV = Coefficient of volume compressibility cm2/kgf 
DP = Range("B9")    '  DP = Load increment kgf/cm2 
AL = Range("B11")   '  AL=α = Coefficient of secondary compression 

VFD = AL / 1440 
' VFD = Rate of secondary compression at time 1440 min 
MP = Range("B14") 
' MP = Coefficient of volume compressibility cm2/kgf  defined by 
' primary compression 
EP = MP * DP  
' EP = MP*DP Primary compression at drainage boundary 
A(1) = EP 
' Primary consolidation copletes immediately after loading 
EF = MV * DP      '  EF = MV*DP Total compression at 1440 min 
VID = VFD * Exp((EF - EP) / AL) 
' VID= Initial rate of secondary compression 
 ES = 0            ' ES = Secondary compression at time = 0 
 
m = n - 1                    ' m = Number of element 
DT = 0.5 * (H / m) ^ 2 / CV     ' DT = Time increment min 
  
For  k = 1  To  19 
U = k * 5                   ' U= Degree of consolidation 
If k < 10 Then               ' TV= Time factor at every dU=5% 
TV = 0.785 * (U / 100) ^ 2    ' i=19 ～ U= 95% 
Else 
TV = 1.781 - 0.405 * Log(100 - U) 
End If 
Cells(k, 5) = TV * H ^ 2 / CV   ' Cells(k,5) = Elapsed time min 
Next k 
 
' Set up  time interval  in secondary compression period 
For k = 20  To  30            ' Cells(30,5) = 1440 min 
Cells(k, 5) = Cells(k - 1, 5) * 1.55  ' Constant 1.55 = variable 
Next k 
 
For i = 2  To  n    ' Zero clear strain in consolidation layer 
A(i) = 0           ' Strain=0 at Nodal point i 
Next  i            ' Nodal point of i=1 at drainage boundary 
                    ' K=1～19   U = 5～95 % 
 
For k = 1 To 30       ' k > 20 ～ Cal. of secondary compression 
AGAIN: 
For  i = 2  To  m   ' Consolidation equation in terms of strain 
B(i) = 0.5 * (A(i - 1) + A(i + 1)) 
Next i 
B(n) = A(m)        ' i = n = 11 at impermeable point 
 
For i = 2 To n        ' B(i)= Strain after time DT 
A(i) = B(i) 
Next i 
ES = ES + VID * Exp(-ES / AL) * DT 
A(1) = EP + ES 
 
CT = CT + DT        ' IF Elapsed time  CT  <  Cells(K, 5) 
If  CT  <  Cells(k, 5)  Then  GoTo  AGAIN   
' Go back  Label  AGAIN 
                        
SUM = 0.5 * (A(1) + A(n)) 
For  i = 2  To  m 
SUM = SUM + A(i)    ' SUM = Sum of strain at all points 
Next  i 
 
Cells(k, 6) = SUM / m    ' Cells(i,6) = Average strain 
Cells(k, 7) = ES          
' Cells(i,7) = Secondary compression at drainage boundary 
 
Next  k 
 
End  Sub 
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