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ABSTRACT 

Non-Newtonian fluids such as Bingham model have been widely used to simulate the motion of viscous debris flow. The 
materials will flow only if shear stresses exceed its yield strength, and the integrals along the depth can be performed in the shear 
layer and plug layer, respectively. The pore-water pressure is considered in the rheological model according to the physical 
properties of viscous debris flow. In addition, the lateral pressure in horizontal direction inner debris flow is different from 
hydrostatic assumptions due to the presence of particles, the earth pressure coefficient with Savage-Hutter assumption is added 
into the governing equations. The governing equations of debris flow are solved by using Lagrange difference method, and the 
effects of material parameters, earth pressure coefficient and inclination angle on the runout characteristics such as velocity 
distribution, runout distance and deposit shape are analyzed. Numerical results show that the debris flow starts to move due to the 
gravity, the velocities vary almost linearly, and the rear end of debris flow moves backward because the inclination angle of plane 
is very small. Finally, it stops due to the basal friction force and the maximum final height locates the start position of horizontal 
section. Recent studies have suggested that the earth pressure coefficient mainly influences on the depth profile of granular flow, 
however, these phenomena have not been captured in the numerical results for debris flow perhaps due to the small inclination 
angle. Further studies are needed to determine the effects of earth pressure coefficient on the natural debris flow with more 
complex topography. 

Key words: Debris flow, Bingham model, depth-integrated equations, depth-dependent yield strength, computational fluid 
dynamics.

1.  INTRODUCTION 
Debris flows are gravitational mass movements of clay, silt, 

sand, rock fragments mixed with air and water. The material 
physical characteristics of debris flow are complicated, and 
mainly depend on grain sizes, grain composition, clay fraction, 
and water contents (Takahashi 1978, 1980; Iverson 1997). The 
interactions between grains such as friction, slide, rotation and 
collision cause the rheological model of debris flow more com-
plex. In addition, the interactions between grain and mud, and the 
organic materials carried by debris flow in the motion further 
increase the complications (Hungr et al. 2001; Blasio 2011). 

The governing equations of debris flow are deduced by 
equations of open channel flow and granular flow based on 
computational fluid dynamics (Johnson and Rahn 1970; Jiang 
and LeBlond 1993; Imran et al. 2001a, 2001b). Johnson and 
Rahn (1970) have proposed that the Newtonian flow cannot re-
flect the non-linear relationship between the velocity and stress, 
and obtained the maximum speed of debris flow by using the 

Bingham model. Johnson’s model clearly explains several phe-
nomena, e.g. the surge deposition, large grain support, and non- 
deformation “rigid plug” in debris flow. Takahashi (1980) has 
proposed the Bagnold-type dilatant fluid that attributed the for-
mation of “surge” of debris flow to the collisions of grains. The 
physical model provides a critical condition of initiation and ac-
cumulation of debris flow, simultaneously explains the mecha-
nism of phenomenon that there is no “rigid plug” in debris flow 
sometimes, and defines the effect of turbulent on the basal re-
sistance model (Liu 2002). 

Debris flows are accelerated downward by gravity and tend 
to follow steep mountain channels (Takahashi 1978; Iverson 
1997; Hungr et al. 2001). The runout characteristics of debris 
flow are more complicated due to the solid/fluid duality. In a 
general way, the Bingham model is employed in the viscous de-
bris flow, meanwhile, the Bagnold model is commonly employed 
in the dilute debris flow (Liu et al. 1995; Laigle and Coussot 
1997; Liu 2002). For the two models mentioned above, however, 
it is difficult to define the critical threshold of clay content in 
debris flow. 

Combining the results of laboratory experiments, Savage 
and Hutter (1989) have proposed, perhaps, the first incompressi-
ble frictional granular flow equations in the form of the depth- 
averaged mass and momentum balance equations along the slid-
ing surface. A comparative analysis between Bingham model, 
Bagnold model, and Coulomb model with pore-water pressure is 
performed to analyze the motion of debris flow by Iverson (1997). 
Liu (2002) has proposed that the Coulomb model with 
pore-water pressure is different from the movement mechanism 
models proposed by Johnson and Rahn (1970) and Takahashi, 
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(1978, 1980), because it attributes the initiation mechanism of 
debris flow, and is mainly used to explain the failure process of 
debris flow in source area. 

For vigorous debris flows, the spread is more predominant 
than the depth in scale, and translation is more significant than 
rotation in movement, it is reasonable to assume that the mo-
mentum equations are integrated along the vertical depth (Jiang 
and LeBlond 1993; Laigle and Coussot 1997; Huang and García 
1997; Blasio 2011). Savage-Hutter type models have been suc-
cessively extend to include the curvilinear coordinate model 
(Hutter et al. 1993; Hutter and Rajagopal 1994), mixture phases 
model (Iverson 1997), three dimensional model (Denlinger and 
Iverson 2004), erosion (entrainment) model (Luna et al. 2012), 
and two fluid model (Pitman and Lee 2005; Pudasaini et al. 
2005; Pudasaini 2012). 

In the two-phase model, debris flow and ambient fluid (air 
or water) are considered as a whole to simulate debris flow 
movement by using interface tracking technology (e.g. Volume 
of Fluid method). According to the flow characteristics of Bing-
ham model, debris flow can flow only if shear stresses exceed its 
yield strength, otherwise, it moves like a rigid plug (Wu et al. 
2013; Wu and He 2014). Based on this, we can divide the Bing-
ham fluid into two layers: The upper is plug layer, and the lower 
is shear layer. There are obviously differences between the two 
layers, the integral equations can be carried out in the two layers, 
respectively. 

Jiang and LeBlond (1993) have presented a numerical model 
that simulated the coupling of a Bingham plastic mudslide on a 
gentle uniform slope with the surface waves. In addition, Huang 
and Garcia (1997) have proposed an analytical solution for lami-
nar mudflows and debris flows that can be modeled by a Bing-
ham-plastic law, the method of matched asymptotic expansions 
was implemented to get a first-order solution. Based on the mod-
el mentioned above, Imran et al. (2001a, 2001b) have adopted 
the Lagrange finite difference method to solve the governing 
equations of debris flow, which is widely used to simulate debris 
flow movement. Two-layer model can explain many phenomena 
in the motion of debris flow, and show affinities with Johnson’s 
model, because they all attribute the non-Newtonian fluids. 

In this paper, the depth-dependent yield strength of debris 
flow is proposed according to the physical properties of viscous 
debris flow. The lateral earth pressure coefficient with Savage- 
Hutter assumption is added, the governing equations of debris 
flow are deduced by integrating the velocities and heights in the 
plug layer and shear layer, respectively. Several numerical ex-
periments with different material parameters are implemented to 
analyze the effects of inclination angle, yield strength, and earth 
pressure coefficient on the moving time, runout distance and final 
deposit shape of viscous debris flow. 

2. PHYSICAL PROPERTIES OF VISCOUS 
DEBRIS FLOW 

Viscous debris flows are mixed by soil and water, generally, 
their densities are greater than 2000 kg/m3, 

( )d v s w wC       (1) 

where s and w denote densities of soil and water, respectively. 
Their values can be obtained by laboratory experiments; Cv is 

volume content of soil in debris flow, its upper limit and lower 
limit are analyzed by practical viscous debris flow, 

60% v sC C    (2) 

where Cs is solid particle content of debris flow, 

1s sC n    (3) 

where ns is porosity of soil; for soil with well particle size distri-
bution, Cs can reach 80%. According to Eq. (2), the value of Cv is 
mainly range from about 60 to 80. The water volume fraction 
of debris flow Cw  1 Cv, its value is range from 20 to 40. 

For viscous debris flow, the distributions of particles size are 
generally wide, including soft clay, silt, fine sand, coarse sand, 
gravel and cobble. The porosity between soil particles are filled 
with mud and small amounts of air, as shown in Fig. 1. The soil 
particles with diameters less than 0.05 m mixed water possess a 
property of plasticity and shear strength 0; the soil particles with 
diameters less than the maximum suspending size D0 are sus-
pending because of the buoyancy of mud; for the soil particles 
with diameters greater than the maximum suspending size, they 
will be in free contact state due to the buoyancy of mud and the 
effective contact forces between particles. In addition, the soil 
particles are in contact state and have a friction angle s. 

When a viscous debris flow moves downward the inclined 
plane, the gravity induced shear stress is opposed by the com-
bined effect of undrained shear strength and viscosity. The shear 
strength is the minimum shear stress corresponding to the first 
evidence of flow, i.e., the value of the shear stress at zero veloci-
ty gradient. The shear strength of viscous debris flow is less than 
the soil’s shear strength, according to the qualitative test analysis, 
the shear strength of viscous debris flow follows the Coulomb 
law, 

0 tany m        (4) 

where tan m is internal friction coefficient of viscous debris flow. 
 
 

 

Fig. 1 Fluid structure diagram of viscous debris flow, debris 
flows are composed of the coarse grain, fine grain and 
slurry; the particles mixed water have a property of 
plasticity and shear strength, while the soil particles are 
in contact state and have a friction angle 
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where 0 is the cohesive strength. It is difficult to be measured 
due to the limitation of apparatus. In this paper, the cohesive 
strength of viscous debris flow can be replaced by shear strength 
of debris flow slurry 0; on the right side of Eq. (4), the second 
item is the internal friction strength of debris flow.  is normal 
stress and can be replaced by the hydrostatic pressure by using 
the basic theory of fluid dynamics, 

d pgh     (5) 

where hp is height of debris flow in the plug layer, g is gravita-
tional acceleration, tan m can be obtained by the following 
method. The internal friction strength of viscous debris flow is 
mainly composed of the internal friction strength of soil, we can 
regard them as uniform, 

tan tan ( ) tanm d p m v s y p sgh C gh          (6) 

where the right side of Eq. (6) is internal friction strength of soil 
in debris flow, tans is the internal friction coefficient of saturat-
ed loose solid material. The viscous debris flow is composed of 
high content (40 to 60) of silt and clay-size material, little 
sand and water, fine grainy material or soil have a smaller fric-
tion angle than the coarse sediment or debris flow. In this paper, 
s is assigned as 18 ~ 20. 

From Eq. (6), we can obtain, 

tan ( ) tan /m v s y s cC       (7) 

where y is the density of solid particles in viscous debris flow: 
y = Pd (sm) + m. Pd is the weight percentage of soil that 
particle sizes less than D0, m is the density of mud excluded 
portions with particles sizes larger than 0.05 mm. 

Iverson (1997) have proposed that pore-water pressure plays 
a key role in the process of debris flow movement, if the pore- 
water pressure pu is considered, the yield stress is given by: 
yc(nPu) tanm. In order to simplify the model, we adopt 
the apparent friction angle proposed by Sassa (1989) to replace 
internal friction angle, and Eq. (4) can be rewritten as,  

tany n ac       (8) 

where the apparent friction angle a is obtained by 
n tana(nPu) tanm. 

From Eq. (8), we can see that the shear stress of debris flow 
in the plug layer increases with the depth, the shear stress is no 
longer a constant, but a variable of depth dependent in the plug 
layer. In shear layer, the hydrostatic pressure and shear stress are 
also constants. 

3. GOVERNING EQUATIONS OF DEBRIS 
FLOW  

3.1  Depth Integrated Theory 

Debris flow is considered as a two-dimensional, unsteady, 
laminar flow downward a relatively steep slope at an angle , and 
a coordinate system is defined as the x-axis down slope and the 
y-axis upward normal to the bed. Based on the boundary layer 
approximation, the governing equations of debris flow can be 
written as, 

0
u v

x y

 
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 
  (9) 

1
sin

d

u u v P
u v g

t x y x y

     
             

 (10) 

1
0 cos

d

P
g

y

 
      

  (11) 

where u, v are x, y directional velocities, respectively. P,  are 
pressure and shear stress, respectively. d is density of debris 
flow. 

The Herschel-Bulkley model exhibits a non-linear property 
and is widely used to simulate the motion of mudflow, debris 
flow, debris avalanche and flow slide. The rheological model can 
be expressed as, 

0 | |

/ sgn( ) | |

n
y

y yr

          
 (12) 

where r(y / K)1/n, in which y is the yield stress, K, n are em-
pirical parameters. 

As similar with other non-Newtonian fluids such as Bing-
ham model shown in Fig. 2, the fluid will flow only if the shear 
stresses exceed its yield stress, otherwise, it moves like a rigid 
plug. Therefore, there are two layers with significantly different 
flow characteristics in debris flow: Plug layer and shear layer. 
Therefore, the integrals along the depth can be performed in the 
shear layer and plug layer, respectively. 

Based on the boundary layer theory, the Von Karman mo-
mentum integral method and Leibniz rule are used to integrate Eq. 
(9) from 0 to hs, Eq. (10) from 0 to hs and from hs to h, respec-
tively. We can obtain the mass equation and momentum equa-
tions in the plug layer and shear layer, 
 
 

h

h s
h p

 

Fig. 2 Sketch of flow characteristics of non-Newtonian fluid. 
The fluid will flow only if the shear stresses exceed its 
yield stress, otherwise, it moves like a rigid plug (after 
Wu et al. 2014) 
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where h, hs, hp, up denote total height of debris flow, height in the 
plug layer, height and velocity of debris flow, respectively. S 
denotes the slope of inclined plane, sgn(u) |u|/u;           
 (da)/d, where a is the density of ambient fluid.  

In this paper, we assume that viscous debris flow is a steady 
flow with depth h, the flow velocities in the plug layer are uni-
form. It is further assumed that the interfacial shear stress be-
tween the debris and the ambient fluid above is negligible. The 
coefficients in Eqs. (13) ~ (15) are, 

1 0

1 1 1/
( )

2 1/
sh

p s
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
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  (16) 

2
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2 1/ 3 2 /
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(1 1/ )nn     (18) 

1 1 2 1( ) / (1 )       (19) 

There are four unknowns h, hs, hp, up in the governing equa-
tion of debris flow, in view of the height of debris flow is sum of 
the height of plug layer and shear layer: h  hs  hp. The Eqs. (13) 
~ (15) can be solved with the condition mentioned above. In the 
process of integration along the depth, the relationship between u 

and up: u up(hp1hs)/h can be acquired. In order to solve the 
averaged velocity and use Lagrange difference method, Eqs. (13) 
~ (15) can be transformed to the following types, 
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where d
u

dt t x

 
 
 

. 

3.2  Earth Pressure Coefficient 

Let us consider debris flows traveling along a slope with 
laminar state, the momentum equations for the component of the 
velocity along slope are rewritten as, 

0 0

cos ( )1
cos

h h

d

gp h y hddy
x x xd

dy gh
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
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  
    

  (23) 

If debris flow has not uniform thickness, a lateral force aris-
es pushing from the thick to the thin parts of the debris flow, 
consider for simplicity the debris resting on a flat area (De Blasio 
2011). At two positions x and x + x, the horizontal forces 
through a vertical slice are, respectively, 
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  (25) 

If the height of the material decreases with x, then  

( ) ( ) ( )dF x x F x gh x h       (26) 

We set the shear stress at the base as b, Eq. (26) can be re-
written as, 

( )d bgh x h x       (27) 

From Eq. (27), we obtain, 

( )b d
h

gh x
x


  


  (28) 

It is worth noting that in the presence of a granular compo-
nent, the earth pressure form can be written as, 

,cos a p
h

gh k
x
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
  (29) 

Substituting Eq. (29) into Eq. (23), we obtain, 
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where,  
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where ka,p in Eq. (32) is the earth pressure coefficient, subscript a 
and p are active and passive condition, respectively. b denotes 
bed friction angle, and  is a constant with a very small value and 
used as a threshold to avoid the machine precision error (Ouyang 
et al. 2013). Figure 3 shows the Mohr’s circle of the stress state 
of debris flow. The researches on earth pressure can be divided 
into three models: Savage-Hutter model (Savage and Hutter 
1989), Rankine model (Pirulli et al. 2007; Wu et al. 2014), and 
Hungr model (Hungr 1995, 2008; Hungr and McDougall 2009). 
In two-dimensional model, there is little distinction between the 
three models mentioned above, and the original Savage-Hutter 
model is adopted in the paper. 

The velocity gradient of debris flow in the plug layer is zero, 
it is similar to the hydrology model (e.g., shallow water equation). 
The earth pressure coefficient always equal 1.0 and is unneces-
sarily to be modified in the plug layer due to the zero velocity 
gradient; while, in the shear layer, the earth pressure of debris 
flow are transformed continuously between active, passive and 
static conditions, and the earth pressure coefficient is necessary 
to be improved due to the present of particles. 

Based on the theory of computational fluid dynamics, the 
shear stress of viscous debris flow and earth pressure coefficient 
with Savage-Hutter assumption are both considered, Substituting 
Eqs. (8) and (30) into Eqs. (20) ~ (22), the governing equations 
of debris flow are given by, 

Mass equation, 
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Momentum equation in plug layer,  
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Momentum equation in shear layer,  
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  (35) 

From Eqs. (33) ~ (35), we see that for the momentum equa-
tion, the acceleration of debris flow depends on the following 
factors, (1) the spatial variation of x momentum fluxes; (2) driv-
ing gravitational force; (3) dissipative internal friction force; and 
(4) dissipative basal friction force, its direction depends on the 
velocity of debris flow. 

 

Fig. 3 Mohr’s circle representing the stress state in an element 
of material undergoing general shearing in the passive 
regime and basal shearing at the contact between the 
material and the base of the flow (after Savage and Hut-
ter 1989; Hungr 2008) 

4.  NUMERICAL SCHEME  

For depth averaged equations, the numerical method can be 
divided into three types: Adding a viscous coefficient, using a 
high resolution algorithm, and developing the finite volume 
method. Equations (33) ~ (35) also can be solved by using the 
algorithm of depth averaged equations. According to the La-
grange difference method (Savage and Hutter 1989; Imran et al. 
2001a; Imran et al. 2001b; Hutter and Rajagopal 1994), as shown 
in Fig. 4, the debris flow is divided into a number of cells, and 
the index i and j are denoted as the cell centers and cell boundary 
points, respectively. 

In the initial state, we give u and up a very small value, the 
velocities in the boundary of mesh are denoted by uj and upj, re-
spectively; the velocities of node can be obtained by 

11/ 2( )i j ju u u    and ( 1)1 / 2( )pi pj p ju u u   . 

The density of debris flow is constant, the mass conservation 
equation can be transferred to the condition that the area of ele-
ment is constant, in other words, because the right part of Eq. 
(20) equal zero, integrating it from xj to xj+1 can be a constant, 
and Eq. (20) can be rewritten as, 

1 1

10 ( ) const

j j

j j

x x

x x

i j j

dx
h hu d

hdx
t x dt

h x x

 




     

   

 

 (36)

 

According to the mass conservation equation, we can obtain 
the center height of element: 

1

1

t t
j jt t t

i i t t t t
j j

x x
h h

x x


 






  (37) 

After t, the displacement of grid boundary 1
t
jx  ,  

( 1/2)
1

t t n
j j jx x u t
      (38) 

Shear
stress

Normal
stress 

Failure envelope 
   tan i 
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Fig. 4 Sketch of numerical method, the indexes i and j are cell 
centers and cell boundary points, respectively 

The difference scheme of momentum equations in the plug 
layer and shear layer are listed as following Eqs. (39) and (40), 
respectively, 

( ) cos

cos tan
sin sgn( )

pt t t
pj pj p

p a
p

d p

u h
u u t u u g

x x

c gh
g u

h

  
        

   
    

 

  (39) 

 2 2
1 1

,

1
(1 )

sin cos

( cos tan )
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g k g

x
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u

h h

         


   



    
  
   

 

  (40) 

Notice that the sign of earth pressure coefficient are defined 
by, 

1

, 1

1

( )

1.0 | |

( )

t t
a j j

t t t t
a p j j

t t
p j j

k u u

k u u

k u u








   


   
   

 (41) 

In order to hold the stability of arithmetic, a viscosity item is 
added into the velocities of node, 

1 1

( 1) ( 1)

( 2 )

( 2 )

j j m j j j

pj pj m p j pj p j

u u v u u u

u u v u u u

 

 

   


   
 (42) 

where 
1 1

1 1

2

2
j j j

m c
j j j

h h h
v v

h h h
 

 

 


 
. vc is artificial viscosity coeffi-

cient, and can be selected to be a small value. 
It is worth noting that there are four unknowns h, hs, hp, up in 

the governing equations of debris flow, the relationship between 
u and up: u  up (hp 1hs)/h, can be converted to the following 
form, 

1 1

/ 1

/

pj j pj

j

pj j pj

u u u
u

u u u

 
  

 (43) 

1 1(1 )p
p

u
h h

u

 
     

 
 (44) 

We give the initial velocity in the plug layer up a very small 
value, the total velocity u can be obtained by Eq. (43); the depth 
in the plug layer hp can also be determined according to the rela-
tionship between u and up; meanwhile, the depth in the shear 
layer hs can be obtained by hs = h hp. 

The time step is set as 0.001 / 9.81x , x denotes grid 
size. The artificial viscosity coefficient in the numerical approach 
is set as 0.03. The calculation will stop if the maximum velocity 
of debris flow is less than 0.01m/s. The details of Lagrange dif-
ference method can refer to Savage and Hutter (1989), Imran   
et al. (2001a), Imran et al. (2001b) and Hutter and Rajagopal 
(1994). 

5.  NUMERICAL MODEL AND RESULTS 

5.1 Release of Debris Flow on an Inclined Plane with 
Flat Gradient 

Release of debris flow moving on an inclined plane is per-
formed in this paper. h0 and L0 denote the maximum initial height 
and length of debris flow, respectively, the initial pile of debris 
flow to be released is assumed to have a thickness h(x) that varies 
in the shape of a parabola with length and maximum height:   
h(x) h0 4h0((x L/2)/L)2. Figure 5 shows the numerical model 
of debris flow, the maximum initial height and length of debris 
flow are 20 m and 100 m, respectively; The angle and length of 
inclined plane are 15 and 1,000 m, respectively; the horizontal 
length and fillet radius are 2,000 m and 1,000 m, respectively. In 
order to ensure the computational accuracy, the grid size is set as 
5.0 m. The density of debris flow and air are 1,800 kg/m3 and  
1.0 kg/m3, respectively. The details of physical quantities in the 
numerical models are listed in Table 1.  

The numerical results have been scaled by L0

 
for length, H0

 for height (depth) and 0.5
0U gA  for velocity, respectively. A 

denotes the total cell’s area of debris flow and remains constant 

due to the invariant density. The initial length and height are   

L0 100 m, H0 20 m, respectively. We can obtain the volume 

per unit width A  4000/3 m2, and the velocity scale U0 19.11 

m/s. Note that U0 is a velocity scale and not the actual velocity of 

any debris flow. Table 2 lists the predicted results of the original 

and depth-dependent yield strength models, Case 1 represents the 

original model, i.e., the yield strength remains constant, while, 

Case 2 represents the modified model, and has a depth-dependent 

yield strengths. 

Figure 6 shows the computed results of the depth-dependent 
yield strengths at several typical times. The solid and short dash 
lines represent the depth profile and velocity distribution, respec-
tively, at the last panel, dash-dot line denote the front velocity of 
debris flow. From Fig.6, we see that debris flow moving fast at 
the beginning due to the gravity; the velocity of debris flow will 
reduce and gradually tend to be zero with the influences of basal 
friction force. At the early stage, the velocities of debris flow 
vary linearly, similar arguments for granular flow with Coulomb 
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friction law have reported by Tai et al. (2002). Finally, the debris 
flow stops because potential energy transfers to kinetic energy 
and converts to internal energy by overcoming the basal friction 
force. The maximum final height locates the start position of 
horizontal plane. From the front velocity of debris flow at the last 
panel, it can be seen that the front velocity of debris flow accel-
erates quickly, then remains approximately constant until it 
reaches the curved transition, and finally stops moving from the 
front to tail in the runout zone. 

Table 1  Physical quantities in the numerical models 

Physical quantities Value Physical quantities Value

Density of debris flow 
1,800 
kg/m3 

Inclination angle 15 

Density of ambient air 1.0 kg/m3 Length of inclined plane 1,000 m

Initial height of 
debris flow H0 

20 m 
Length of horizontal 

plane 
2,000 m

Initial length of 
debris flow L0 

100 m Fillet radius 1,000 m

Initial velocity of 
debris flow 

0 m/s Bed friction angle 10 

Empirical parameter n 1.0 
Artificial viscosity 

coefficient vc 
0.03 

Reference strain rate r 2.5 Threshold value  10e5

Table 2 Predicted results of the original and depth-dependent 
yield strength models 

Run 
no. 

Inclination 
angle 

Earth 
pressure 

coefficienta 

Shear strengthb 
Runout 
timec 

Runout 
distance

Cohesion
Internal 
friction 
angle 

Case 1 15 1.0 600 Pa 110.60 s 13.31 L0

Case 2 15 S-H 
assumption 

500 Pa 15 113.97 s 13.42 L0

a Case 1 employs the hydrostatic assumption, and Case 2 employs the 
Savage-Hutter assumption with a bed friction angle of 10; 

b Case 1 has a constant shear strength, and Case 2 has a depth-dependent 
yield strengths; 

c Time at which the maximum velocity reaches negligible value. 
 
 

 

Fig. 5 Numerical model of debris flow, debris flow will move 
from initial condition due to gravity; then stop because of 
the potential energy transfers to kinetic energy and is 
converted to internal energy by overcoming the basal 
friction 
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Fig. 6 The computed results of Case 2 at 2s, 10s, 30s, 50s and 
113.97s, respectively 

Figure 7 shows the velocity distributions of debris flow at 
several typical times, it can be seen that the tail of debris flow 
moves backward due to the gravity, meanwhile, the front of de-
bris flow moves forward quickly. The velocities of debris flow in 
the inclined plane vary almost linearly. When the debris flow 
reaches the curved transition, the velocity decreases in the ap-
proaching front. Finally, the debris flow reaches the horizontal 
section. The maximum moving time and runout distance are 
about 113.97 s and 13.42 L, respectively. The maximum dimen-
sionless velocity at the several typical times are about 2.0, be-
cause the numerical model is not the natural debris flow, the 
maximum velocity of debris flow perhaps is much larger than it 
really is. 

Figure 8 shows the final deposit shapes of the original and 
modified models. We see that the law of motion and maximum 
deposit height of the modified model are close to that of the 
original model. The predicted runout distance of the modified 
model is slightly greater than that of the original model. The ma-
terial parameters adopted in the paper is not the accurate param-
eters of real debris flow, our goal is to analyze the movement law 
of debris flow with different models and not to exactly predict 
the natural debris flow. The similar results have validated the 
reasonableness and reliability of predicted results with depth 
dependent yield strength model. 

5.2  Role of Earth Pressure Coefficients 

In order to analyze the effect of earth pressure coefficient on 
the motion of debris flow, several bed friction angles are adopted 
to simulate the moving time and runout distance. Hydrostatic 
assumptions are employed in Case 1, i.e., the earth pressure coef-
ficient equal 1.0; while the bed friction angles equal 8, 10and 
14.5 in Case 2, 3, and 4, respectively. The runout characteristics 
are listed in Table 3, we see that the active and passive values of 
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earth pressure coefficient approach 1.0 with increment of bed 
friction angle, the runout distance increases with increasing bed 
friction angle. The moving times of several cases have no signif-
icant regularity due to the terminal criterion adopted in the nu-
merical approach. It is perhaps because the deposit will continue 
to creep very slowly even after rapid flow has ceased. 

Table 3  Runout characteristics of debris flowa 

Run 
no. 

Inclination 
angle 

Internal 
friction 
angle 

Bed 
friction 
angle 

ka kp  
Runout 

time 
Runout
distance

Case 1b 15 15  1.0 1.0 127.79 s 13.46 L0

Case 2 15 15 8 0.67 1.62 116.75 s 13.42 L0

Case 3 15 15 10 0.73 1.56 113.97 s 13.42 L0

Case 4 15 15 14.5 0.99 1.29 123.97 s 13.43 L0

a ka and kp denote the active and passive values of earth pressure coefficient, 
respectively; 

b Hydrostatic assumptions are employed in Case 1, i.e., the earth pressure 
coefficient in Case 1 equals 1.0. 
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Fig. 7  Velocity distributions of debris flow at typical times 
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Fig. 8  Final deposit shapes of the two cases 

Using the conclusions drawn by Tai et al. (2002), Pirulli et 
al. (2007) and Savage and Hutter (1991), the earth pressure coef-
ficient mainly influences on the depth profile of granular flow, 
and has no significantly influences on the moving time and 
runout distance. The front part of final deposits of debris flow 
with different earth pressure coefficients are shown in Fig. 9, we 
see that the final deposits are very similar; the more bed friction 
angle approaches the internal friction angle, the more deposition 
profile gets close to the case with hydrostatic assumption. Be-
cause the inclination angle of debris flow is relatively small, the 
influences of the earth pressure coefficient on the runout charac-
teristics for debris flow are not obvious than large natural rock 
avalanches and landslides. 

5.3  Role of Empirical Parameter n 

If the empirical parameter n equals 1.0, the Herschel- 
Bulkley model will reduce to the Bingham model, to analyze the 
effect of n on the movement of debris flow, four values of n 
ranging from 0.7 to 1.0 are chosen in the numerical experiments 
(see Table 4). It is known that the smaller the n value, the larger 
the runout distance of debris flow, however, the runout times 
have no significant regularity as mentioned above. We can con-
clude that the computing time cannot exactly describe the real 
runout time if the depth averaged equations are solved by La-
grange difference methods, especially for the complex topogra-
phy. By contrast, the runout distance and depth profile are more 
reliable. 

Table 4 Role of empirical parameter n in the numerical 
simulations 

Run
no.

Inclination 
angle 

Empirical 
parameter n

Shear strength 
Runout 

time
Runout 
distance

Cohesion 
Internal 
friction 
angle 

Case 1 15 1 500 Pa 15 113.97 s 13.42 L0

Case 2 15 0.9 500 Pa 15 159.20 s 14.26 L0

Case 3 15 0.8 500 Pa 15 110.26 s 15.35 L0

Case 4 15 0.7 500 Pa 15 101.39 s 16.79 L0
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Fig. 9  Final deposit profiles of the four cases 
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5.4  Role of Inclination Angle of Plane  

The inclination angle of plane plays an important role for the 
runout characteristics, we conduct a numerical case with a incli-
nation angle of 10 to analyze the effect of inclination angle on 
the runout distance, the fillet radius is set as 1000 m, and the 
corresponding curved transition is shorter than that of the original 
case. The computed results are listed in Table 5, we see that the 
runout distance decreases with increasing inclination angle, and 
the final deposition shapes are very similar. Combined the Figs. 6 
and 10, the maximum final heights of debris flow nearly locate in 
the start position of horizontal plane, the rear end of debris flow 
slightly moves backward. This phenomena depends on the nature 
of non-Newtonian fluid and are different with Coulomb and cor-
responding advanced rheological models (Pudasaini et al. 2005; 
Pudasaini 2012). Figure 11 shows the velocity distribution of 
Case 2, it is known that the maximum velocity of Case 2 is sig-
nificantly less than that of Case 1, and this feature influences the 
runout distance of debris flow. 

Table 5  Runout characteristics of debris flow 

Run 
no. 

Inclination 
angle 

Bed 
friction 
angle 

Shear strength 
Runout

time 
Runout 
distance

Cohesion 
Internal 
friction 
angle 

Case 1 15 10 500 Pa 15 113.97 s 13.42 L0

Case 2 10 10 500 Pa 15 111.40 s 12.76 L0
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Fig. 10 The computed results of Case 2 at 2 s, 10 s, 30 s, 50 s and 
111.40 s, respectively 
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Fig. 11  Velocity distributions of debris flow at typical times 

6.  CONCLUSIONS 

Based on physical characteristics of viscous debris flow, the 
basal friction item is improved by introducing the shear stress 
index. In addition, the earth pressure coefficient with Savage- 
Hutter assumption is taken into considered in the shear layer, and 
the governing equations of debris flow are established. The mod-
el is solved by Lagrange difference method and verified by sev-
eral numerical models. Our goal is not to analyze the real debris 
flow, but to implement the contrastive analysis of the modified 
and original models, and further study the sensitivity of material 
parameters. Numerical results show that the debris flow starts to 
move due to the gravity, and the velocities vary almost linearly, 
this is in line with those already described in Pudasaini et al. 
(2005), and Pudasaini and Hutter (2007). The rear end of debris 
flow moves backward because the inclination angle of plane is 
very small. The runout characteristics of the modified model with 
a depth dependent yield strength are very close to that of the 
original model. 

The earth pressure coefficient has a significant influence on 
the movement of granular flow, especially on the large rock ava-
lanches and natural landslides. Several cases with different bed 
friction angles are performed, and the numerical results show the 
effect of bed friction angle on the runout distance is insignificant. 
As described in Pirulli et al. (2007) and Hungr (2008), the earth 
pressure coefficient mainly influences on the depth profile, how-
ever, these phenomena have not been captured in the numerical 
results for debris flow perhaps due to the small inclination angle. 
It can be further studied for the relatively steep or complex to-
pography. In addition, the computing time is not the exactly 
moving time of debris flow and only used as a reference, if the 
terminal criterion is set as the maximum velocity less than a very 
small value. It is perhaps because the deposit will continue to 
creep very slowly even after rapid flow has ceased. 

The empirical parameter n has significantly influences on 
the runout distance, the rheological parameters are determined to 
be worth of attention by fitting the laboratory tests and observa-
tions. Further, the effects of inclination angle of plane on the 
runout characteristics are obvious. The numerical models adopted 
in the paper are simple and needed to further be applied into the 
practical engineering with depth dependent yield strength model. 
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